Please wait a minute...
金属学报  2006, Vol. 42 Issue (5): 463-468     
  论文 本期目录 | 过刊浏览 |
4种新型舰艇钢的塑性流变应力及其本构模型
郭伟国
西北工业大学航空学院
Plastic low stress and physically based constitutive model of four newer naval vessel steels
WeiGuo Guo
西安市;西北工业大学
引用本文:

郭伟国 . 4种新型舰艇钢的塑性流变应力及其本构模型[J]. 金属学报, 2006, 42(5): 463-468 .
. Plastic low stress and physically based constitutive model of four newer naval vessel steels[J]. Acta Metall Sin, 2006, 42(5): 463-468 .

全文: PDF(1092 KB)  
摘要: 对HSLA-65, DH-36, AL-6XN和Nitronic-50这4种新型舰艇结构钢的力学行为进行了系统研究. 实验的温度变化范围从77 到1000 K, 应变率从0.001到8000 s-1, 真实塑性应变超过40%. 结果表明:(1)这4种结构钢的塑性流变应力对温度和应变率非常敏感, 流变应力随温度的降低和应变率的增加而提高;(2)随塑性应变的增加或变化, 温度历史会显著引起fcc金属内部微观结构演化;(3)在适当的温度和加载应变率范围, 动态应变时效现象发生, 且随应变率提高, 动态应变时效出现的温区移向更高区域. 针对实验所出现的这些现象, 并考虑到塑性流变的粘-曳阻力,根据位错运动机理, 给出了一个基于物理概念的本构模型, 此模型未涉及动态应变时效现象. 通过比较模型预测结果和实验结果, 在很宽温度范围和很宽应变率范围内, 所给出的本构关系能够较好的预测这4种新型舰艇结构钢的塑性流变应力.
关键词 舰艇钢塑性变形流动应力温度    
Abstract:In the present paper, mechanical behavior of HSLA-65, DH-36, AL-6XN and Nitronic-50 is systematically studied. Strains over about 40% are achieved in these tests over a temperature range of 77-1,000K and strain rates of 0.001 to 8,000/s. The results show that, 1) Plastic flow stress of the four newer steelsis is sensitive to the temperature and strain rate, flow stress decreases with decreasing temperatures and increasing strain rates; 2) With increasing or changing plastic strain, the temperature history remarkably affects the microstructure; 3) Dynamic strain aging occurs at lower strain rates and higher temperatures. With increasing strain rates, the stress peak of dynamic strain aging will shift to higher temperature region, or even disappear in the present strain rate range. Taking into account all these phenomena, based on the mechanism of dislocation motion, including the effect of viscous drag on the motion of dislocations, the physically-based model is shown, but excluding the dynamic strain aging effects, The parameters of this model contain the physical concept. Finally, the results of model is discussed. The model predictions are compared with the results of the experiments in a wide range of temperatures and strain rates, but excluding plastic flow stresses in dynamic strain aging region.
Key wordsNaval vessel steel    Plastic defomation    flow stress    temperature    strain rate    constitutive model
收稿日期: 2005-08-18     
ZTFLH:  TG142.7  
[1] Militzer M, Hawbolt E B, Meadowcroft T R. Metall Mater Trans, 2000; 31A: 1247
[2] Nemat-Nasser S, Isaacs J B, Starrett J E. Proc R Soc Lond, 1991; 435A: 371
[3] Nemat-Nasser S, Isaacs J B. Acta Mater, 1997; 45: 907
[4] Nemat-Nasser S, Guo W G, Kihl D P. J Mech Phys Solids, 2001; 49: 1823
[5] Nemat-Nasser S, Guo W G. Mech Mater, 2005; 37: 379
[6] Nemat-Nasser S, Guo W G. Mech Mater, 2003; 35: 1023
[7] Guo W G, Nemat-Nasser S. Mech Mater, 2005; in press
[8] Qian K W, Li X Q, Xiao L G, Chen W Z, Zhang H G, Peng K P. J Fuzhou Univ (Nat Sci), 2001; 29(6): 8 (钱匡武,李效琦,萧林钢,陈文哲,张好国,彭开萍.福州大 学学报(自然科学版),2001;29(6):8)
[9] Kubin L P, Estrin Y, Perrier C. Acta Metall Mater, 1992; 40: 1037
[10] Beukel A V D, Kocks U F. Acta Metall, 1982; 30: 1027
[11] Nakada Y, Keh A S. Acta Metall, 1970; 18: 437
[12] Cho S H, Yoo Y C, Jonas J J. J Mater Sci Lett, 2000; 19: 2019
[13] Kapoor R, Nemat-Nasser S. Mech Mater, 1998; 27: 1
[14] Nemat-Nasser S, Li Y L. Acta Mater, 1998; 46: 565
[15] Guo W G. Explos Shock Waves, 2005; 25: 244 (郭伟国.爆炸与冲击,2005;25:244)
[16] Kocks U F, Argon A S. Ashby M F. Prog Mater Sci, 1975; 19: 1|
[1] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[3] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[4] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[5] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[6] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[7] 陈继林, 冯光宏, 马洪磊, 杨栋, 刘维. Cr-Mo微合金冷镦钢的显微组织、力学性能及强化机制[J]. 金属学报, 2022, 58(9): 1189-1198.
[8] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[9] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[10] 陈维, 陈洪灿, 王晨充, 徐伟, 罗群, 李谦, 周国治. Fe-C-Ni体系膨胀应变能对马氏体转变的影响[J]. 金属学报, 2022, 58(2): 175-183.
[11] 李海勇, 李赛毅. Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究[J]. 金属学报, 2022, 58(2): 250-256.
[12] 周成, 赵坦, 叶其斌, 田勇, 王昭东, 高秀华. 回火温度对1000 MPaNiCrMoV低碳合金钢微观组织和低温韧性的影响[J]. 金属学报, 2022, 58(12): 1557-1569.
[13] 林鹏程, 庞玉华, 孙琦, 王航舵, 刘东, 张喆. 45钢块体超细晶棒材3D-SPD轧制法[J]. 金属学报, 2021, 57(5): 605-612.
[14] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[15] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.