Please wait a minute...
金属学报  2006, Vol. 42 Issue (5): 459-462     
  论文 本期目录 | 过刊浏览 |
金属直薄壁件激光直接沉积过程的有限元模拟 III. 沉积过程中变形的分析
高士友; 石力开; 席明哲; 纪宏志; 张永忠; 杜宝亮
北京有色金属研究总院
Finite Element Simulation for Laser Direct Depositing Processes of Metallic Vertical Thin Parts(3)
引用本文:

高士友; 石力开; 席明哲; 纪宏志; 张永忠; 杜宝亮 . 金属直薄壁件激光直接沉积过程的有限元模拟 III. 沉积过程中变形的分析[J]. 金属学报, 2006, 42(5): 459-462 .

全文: PDF(1055 KB)  
摘要: 利用模拟不锈钢直薄壁件沉积过程中热应力场的计算结果,分析了直薄壁件产生的“圣诞树”台阶和基板的变形特征. 分析结果说明, “圣诞树”台阶产生的原因是激光束扫描路径的起点与终点处温度场特征的不同和熔池温度的差别. 基板的翘曲变形仅产生在基板上有沉积材料的部位, 基板的左、右端部产生刚性位移. 基板端部位移的实验测量与有限元计算结果相符合, 证明了分析温度场和热应力场的有限元模型的正确性.
关键词 激光直接沉积金属直薄壁件基板变形    
Abstract:Abstract. RP/M is an advance technology based on build-up and discrete idea, and Laser direct deposition by coaxially feeding the powders to laser melting pool is a RM technology in general use. It is a major attention problem in the researches on this technology that the distortion occurring in the depositing process, particularly in the substrate. The characteristics on the substrate distortion and “Christmas tree step” occurring in the depositing process of vertical thin wall samples of 316L stainless steel are analyzed by use of results simulating the thermal stress field in this paper. The analysis results have explained that varied temperature field and dissimilar temperature of melted pool at the position of the start point and end point of laser scanning paths cause the “Christmas tree step”. The distortion of the substrate only occur in the region on which 316L stainless steel have been deposited, and there is the rigidity displacement at the left end and right end. It has demonstrated the finite element models simulating the temperature field and the thermal stress field that the test results to measure the rigidity displacement are agreement with simulating results of finite element.
Key wordsLaser direct deposition    Metallic Vertical thin wall samples    Distortion of substrate    Finite Element S
收稿日期: 2005-09-16     
ZTFLH:  TG142  
[1] Hofmeister W H, Bayuzick R J, Robinson M B. Int J Thermophys, 2000; 10(1): 279
[2] Jendrzejewski R, Kreja I, Sliwiriski G. Mater Sci Eng, 2004; A379: 313
[3] Hu D, Kovacevic R S. Int J Mach Tool Manuf, 2003; 43: 51
[4] Toyserkani E, Khajepour A, Corbin S. Opt Laser Eng, 2004; 41: 849
[5] Brockmann R, Dickmann K. Opt Laser Technol, 2003; 35: 115
[6] Hofmeister W, Griffith M, Ensz M, Smugeresky J. JOM, 2001; 53(9): 30
[7] Shawn M K. Master Thesis. Virginia Polytechnic Institute and State University, 2002
[8] Nickel A H. PhD Thesis, Stanford University, 1999
[9] Nickel A H, Barnett D M, Prinz F B. Mater Sci Eng, 2001; A317: 59
[10] Labudovic M, Hu D, Kovacevic R. J Mater Sci, 2003; 38: 35
[11] Shen Z H, Zhang S Y. Opt Laser Technol, 2001; 33: 533
[12] Dai K, Shaw L. Acta Mater, 2004; 52: 69
[13] Shi L K, Gao S Y, Xi M Z, Ji H Z, Zhang Y Z, Du B L. Acta Ueiall Sin, 2006; 42: 449 (石力开,高士友,席明哲,纪宏志,张永忠,杜宝亮.金属学 报,2006;42:449)
[14] Shi L K, Gao S Y, Xi M Z, Ji H Z, Zhang Y Z, Du B L. Acta Metall Sin, 2006; 42: 454 (石力开,高士友,席明哲,纪宏志,张永忠,杜宝亮.金属学 报,2006;42:454)
[1] 高士友; 石力开; 席明哲; 纪宏志; 张永忠; 杜宝亮 . 金属直薄壁件激光直接沉积过程的有限元模拟 Ⅰ. 沉积过程中温度场的模拟[J]. 金属学报, 2006, 42(5): 449-453 .
[2] 高士友; 石力开; 席明哲; 纪宏志; 张永忠; 杜宝亮 . 金属直薄壁件激光直接沉积过程的有限元模拟 II. 沉积过程中热应力场的模拟[J]. 金属学报, 2006, 42(5): 454-458 .