Please wait a minute...
金属学报  2006, Vol. 42 Issue (4): 361-368     
  论文 本期目录 | 过刊浏览 |
激光快速成形过程中316L不锈钢显微组织的演变
林鑫;杨海欧; 陈静; 黄卫东
西北工业大学凝固技术国家重点实验室
Microstructure Evolution of 316L Stainless Steel During Laser Rapid Forming
Lin X
西北工业大学凝固技术国家重点实验室
引用本文:

林鑫; 杨海欧; 陈静; 黄卫东 . 激光快速成形过程中316L不锈钢显微组织的演变[J]. 金属学报, 2006, 42(4): 361-368 .
, , , . Microstructure Evolution of 316L Stainless Steel During Laser Rapid Forming[J]. Acta Metall Sin, 2006, 42(4): 361-368 .

全文: PDF(1067 KB)  
摘要: 对316L不锈钢在激光快速成形过程中的凝固行为和组织形成进行了系统考察,发现,成形件呈现全奥氏体结构,其组织主要由从基体连续外延生长的细长列状枝晶组成,并显示较强的晶体取向性,其(100)晶向基本平行沉积方向,仅在顶部出现了一薄层转向枝晶层,而在成形件中出现的层带结构并未影响不同熔覆沉积层之间组织生长和取向的连续性,并采用最高界面生长温度判据对激光快速成形中的相形成规律进行了分析,并结合平界面稳定性分析,枝晶生长理论和我们所发展的列状晶/等轴晶转变模型对成形件中的层带形成,外延列状晶生长特性进行了较为系统的研究,并与实验结果得到了合理的吻合。
关键词 激光快速成形不锈钢凝固组织    
Abstract:The solidification behavior and the morphological evolution of 316L stainless steel during laser rapid forming (LRF) were investigated. It was found that, there shows a complete  austenitic structure in the LRF sample within the processing parameters of this study, there was continued epitaxial growth of the g phase of the fine columnar dendrites from the substrate, with the <100> crystallographic orientation leaning to, even parallel to the deposition direction. There also exist a thin layer in which the dendrites grow along the laser scaning direction at the top of the LRF sample. Clad layer bandings were found in the samples; however, the continuity of the growth of the columnar dendrites was not upset. The growth morphology of primary  dendrites can be predicted by the microstructure selection models based on the maximum interface temperature criterion. The formation of the clad layer bandings and the epitaxial growth characteristic during LRF are also explained by the criteria for planar interface instability and dendritic growth theory and the columnar to equiaxed transition model. There shows an reasonable agreement between the theoretic analysis and the experimental results.
Key wordslaser rapid forming    stainless steel    solidification    microstructure
收稿日期: 2005-06-27     
ZTFLH:  TG24  
[1] Lewis G K, Nemec R B, Milewski J O, Thoma D L, Barbe M R, Cremers D A. In: Proc ICALEO '94. Orlando: Laser Institute of America, 1994: 17
[2] Keicher D M, Smugeresky J E, Romero J A, Griffith M L, Harwell L D. Proc SPIE, 1997; 2993: 91
[3] Schlienger E, Dimos D, Griffith M, Michael J, Oliver M, Romero T, Smugeresky J. In: Proc 3rd Pacific Rim Int Conf on Advanced Materials and Processing, Vol I. War-randale: TMS, 1998: 1581
[4] Mazumder J, Schifferer A, Choi J. Mater Res Innovat, 1999; 3: 118
[5] Link G R, Fessler J, Nickel A, Prinz F. Mater Manuf Process, 1992; 13: 263
[6] Gaumann M, Henry S, Cleton F, Wagniere J D, Kurz W. Mater Sci Eng, 1999; A271: 232
[7] Li Y M, Yang H O, Lin X, Huang W D, Li J G, Zhou Y H. Mater Sci Eng, 2003; A360: 18
[8] Zhang C L. Master Thesis, Beihang University, 2002 (张长利.北京航空航天大学硕士学位论文, 2002)
[9] Zhang Y Z, Xi M Z, Gao S Y, Shi L K. J Mate Proc Technol, 2003; 142: 582
[10] Zhong M L, Liu W J, Ning G G, Yang L, Chen Y X. J Mater Process Technol, 2004; 147: 167
[11] Wu X H, Liang J, Mei J F, Mitchell C, Goodwin P S, Voice W. Mater Design, 2004; 25: 137
[12] Banerjee R, Collins P C, Genc A, Fraser H L. Mater Sci Eng, 2003; A358: 343
[13] Banerjee R, Collins P C, Bhattacharyya D, Banerjee S, Fraser H L. Acta Mater, 2003; 51: 3277
[14] Rappaz M, David S A, Vitek J M, Boatner L A. Metall Trans, 1989; 20A: 1125
[15] Kurz W, Fisher D J. Fundamentals of Solidification. 3rd edition, Aedermansdorf, Switzerland: Trans Tech Publications, 1992
[16] Li Y M, Liu Z X, Yang H O, Lin X, Huang W D, Li J G. Aeta Metall Sin,2003;39:521 (李延民,刘振侠,杨海欧,林 鑫,黄卫东,李建国.金属学 报,2003;39:521)
[17] Kurz W, Giovanola B, Trivedi R. Ada Metall, 1986; 34: 823
[18] Rappaz M, David S A, Vitek J M, Boatner L A. Metall Trans, 1990; 21A: 1767
[19] Aziz M J. J Appl Phys, 1982; 53: 1158
[20] Boetinger W J, Corriel S R, Sekerka R F. Mater Sci Eng, 1984; 65: 27
[21] Takeuchi S. The Properties of Liquid Metals. London: Taylor and Francis, 1973
[22] Hunziker O. Ada Mater, 2001; 49: 4191
[23] Langer J D. Rev Mod Phys, 1980; 52: 1
[24] Huang W D. Geng X G, Zhou Y H. J Cryst Growth, 1993; 134: 105
[25] Lin X, Huang W D, Feng J, Li T, Zhou Y H. Ada Mater, 1999; 47: 3271
[26] Lu S Z, Hunt J D, Gilgien P, Kurz W. Ada Metall Mater, 1994; 42: 1653
[27] Lin X, Li Y M, Wang M, Feng L P, Chen J, Huang W D. Sci Chin, 2003; 46E: 475q
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[6] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[7] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[8] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[10] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[11] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[12] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[13] 郭福, 杜逸晖, 籍晓亮, 王乙舒. 微电子互连用锡基合金及复合钎料热-机械可靠性研究进展[J]. 金属学报, 2023, 59(6): 744-756.
[14] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[15] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.