Please wait a minute...
金属学报  2006, Vol. 42 Issue (4): 341-349     
  论文 本期目录 | 过刊浏览 |
沉淀相变晶体学模型的研究进展
邱冬;张文征
清华大学材料系
Research Progress in Precipitation Crystallography models
Dong Qiu;Wenzheng Zhang
清华大学材料系
引用本文:

邱冬; 张文征 . 沉淀相变晶体学模型的研究进展[J]. 金属学报, 2006, 42(4): 341-349 .
, . Research Progress in Precipitation Crystallography models[J]. Acta Metall Sin, 2006, 42(4): 341-349 .

全文: PDF(982 KB)  
摘要: 相变晶体学是对工程材料进行组织设计的重要理论基础。本文综述了国内外沉淀相变晶体学模型的最新研究进展,对各个模型的使用前提、适用条件、求解思路以及自身的局限性分别进行了评述;通过比较不同模型的在求解能力方面的差异,指出将O线模型和近重位位置模型相结合的方法将为理解相变晶体学特征提供更有力的理论工具。
关键词 沉淀相变晶体学理论模型位向关系惯习面    
Abstract:In-depth understanding of precipitation crystallography is very essential to the control of microstructure in many multi-phases materials. The present paper reviews the recent development of various crystallographic models. Each model was reviewed in terms of its hypothesis, applicable scope, basic idea, and especially its limitation. According to the comparison and contrast between different models, it is proposed that combining the O-line model and Near Coincidence Sites model may provide a more powerful tool to interpret the precipitation crystallography and morphology.
Key wordsprecipitation crystallography    theoretical model    orientation relationship    habit plane
收稿日期: 2005-08-10     
ZTFLH:  O71  
[1] Potter D A, Easterling K E. Phase Transformations in Metals and Alloys. 2nd edition, London: Chapman and Hall, 1992: 305
[2] Bollmann W. Crystal Defects and Crystalline Interfaces. Berlin: Springer, 1970: 55
[3] Bonnet R, Durnad F. In: Proc Conf on In situ Composite, Lakeville, USA: NMAB 308-1, 1973: 209
[4] Dahmen U. Scr Metall, 1981; 15: 77
[5] Dahmen U. Acta Metall, 1982; 30: 63
[6] Ameyama K, Weatherly G C, Aust K T. Acta Metall Mater, 1992; 40: 1835
[7] Dahmen U, Ferguson P, Westmacott K H. Acta Metall, 1984; 32: 803
[8] Fujii T, Mori T, Kato M. Acta Metall Mater, 1992; 40: 3413
[9] Weatherly G C, Humble P, Borland D. Acta Metall, 1979; 27: 1815
[10] Luo C P, Dahmen U, Westmacott K H. Acta Metall Mater, 1994; 42: 1923
[11] Luo C P, Weatherly G C. Philos Mag, 1988; 58A: 445
[12] Lang J M, Dahmen U, Wstmacott K H. Phys State Soc, 1983; 75: 409
[13] Viswanadham R K, Wert C A. J Less-Common Met, 1976; 18: 135
[14] Diercks D R, Wert C A. Metall Trans, 1972; 3: 1699
[15] Jack K H. Iron Steel Inst, 1951; 169: 26
[16] Kato M. Mater Sci Eng, 1991; A146: 205
[17] Xiao S Q, Howe J M. Acta Mater, 2000; 48: 3253
[18] Luo C P, Weatherly G C. Acta Metall, 1987; 35: 1963
[19] Howell P R, Southwick P D, Honeycombe R W K. J Mi- crosc, 1979; 116: 151
[20] Hall M G, Aaronson H I. Acta Metall, 1986; 34: 1409
[21] Zhang W Z, Purely G R. Acta Metall Mater, 1993; 41: 543
[22] Zhang W Z, Purely G R. Philos Mag, 1993; 68A: 279
[23] Zhang W Z, Purely G R. Philos Mag, 1993, 68A: 291
[24] Smith D A, Hazzledine P M. Scr Metall, 1981; 15: 393
[25] Qiu D, Zhang W Z. Philos Mag, 2003; 83: 3093
[26] Weatherly G C, Zhang W Z. Metall Mater Trans, 1994; 25A: 1865
[27] Ye F, Zhang W Z, Qiu D. Acta Mater, 2004; 52: 2249
[28] Knowles K M, Smith D A. Acta Crystallogr, 1982; A38: 34
[29] Bilby B A, Bullough R, de Grinberg D K. Discuss Faraday Soc, 1964; 38: 61
[30] Bollmann W, Nissen H U. Acta Crystallogr, 1968; A24: 546
[31] Ecob R C, Ralph B. Acta Metall, 1981; 29: 1037
[32] Hall M G, Aaronson H I, Kinsma K R. Surf Sci, 1972; 31: 257
[33] Rigsbee J M, Aaronson H I. Acta Metall, 1979; 27: 351
[34] Russell K C, Hall M G, Kinsma K R, Aaronson H I. Metall Trans, 1974; 5: 1503
[35] Furuhara T, Aaronson H I. Acta Metall Mater, 1991; 39: 2857-2872
[36] Liang Q, Reynolds W T Jr. Metall Mater Trans, 1998; 29A: 2059
[37] Miyano N, Ameyama K, Weatherly G C. IS1J Int, 2000; 40: S199
[38] Hall M G, Furuhara T, Aaronson H I, Hirth J P. Acta Mater, 2001; 49: 3487
[39] Miyano N, Ameyama K, Weatherly G C. Mater Sci Eng, 2002; A333: 85
[40] Miyano N, Ameyama K, Weatherly G C. Mater Trans, 2002; 43: 1547
[41] Reynolds W T Jr, Nie J F, Zhang W Z, Howe J M, Aaronson H I, Purdy G R. Scr Mater, 2003; 49: 405
[42] Frank F C. Acta Metall, 1953; 1: 15
[43] Fecht H J. Acta Metall Mater, 1992; 40: S39
[44] Shiflet G J, van der Merwe J H. Metall Mater Trans, 1994; 25A: 1895
[45] Howe J M. Interfaces in Materials. New York: John Wiley and Sons, 1997: 299
[46] Howe J M. Mater Trans JIM, 1998; 39: 3
[47] Kelly P M, Zhang M X. Mater Forum, 1999; 23: 41
[48] Zhang M X, Kelly P M. Acta Mater, 2005; 53: 1073
[49] Zhang M X, Kelly P M. Acta Mater, 2005; 53: 1085
[50] Savva G C, Kirkaldy J S, Weatherly G C. Philos Mag, 1997; 75A: 315
[51] Pond R C. In: Nabarro F R N ed., Dislocations in Solids, Amsterdam: North-Holland, 1989: 38
[52] Pond R C, Celotto S, Hirth J P. Acta Mater, 2003; 51: 5385
[53] Ye F. Ph.D Thesis. Beijing: Tsinghua University, 2004 (叶 飞.清华大学博士学位论文,北京, 2004)%
[1] 吴国华, 童鑫, 蒋锐, 丁文江. 铸造Mg-RE合金晶粒细化行为研究现状与展望[J]. 金属学报, 2022, 58(4): 385-399.
[2] 李学达, 李春雨, 曹宁, 林学强, 孙建波. 高强管线钢焊接临界再热粗晶区中逆转奥氏体的逆相变晶体学[J]. 金属学报, 2021, 57(8): 967-976.
[3] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.
[4] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[5] 徐文胜, 张文征. 先共析渗碳体上形核的珠光体晶体学研究[J]. 金属学报, 2019, 55(4): 496-510.
[6] 马秀良, 胡肖兵. 高温合金中硼化物精细结构的高空间分辨电子显微学研究[J]. 金属学报, 2018, 54(11): 1503-1524.
[7] 韦昭召, 马骁, 张新平. NiTi合金B2-B19′马氏体相变晶体学的拓扑模拟研究[J]. 金属学报, 2018, 54(10): 1461-1470.
[8] 王莉,周忠娇,张少华,降向冬,楼琅洪,张健. 镍基单晶高温合金冷热循环过程中圆孔周围裂纹萌生与扩展行为[J]. 金属学报, 2015, 51(10): 1273-1278.
[9] 高古辉, 桂晓露, 安佰锋, 谭谆礼, 白秉哲, 翁宇庆. 终冷温度对Mn系超低碳HSLA钢组织及低温韧性的影响[J]. 金属学报, 2015, 51(1): 21-30.
[10] 周欢, 张铁邦, 吴泽恩, 胡锐, 寇宏超, 李金山. 间隙原子C作用下TiAl合金中析出相的形成及演变规律*[J]. 金属学报, 2014, 50(7): 832-838.
[11] 赵天章, 宋鸿武, 张光亮, 程明, 张士宏. 拉拔过程中珠光体钢丝心部的织构演化规律及其对力学性能的影响*[J]. 金属学报, 2014, 50(6): 667-673.
[12] 韦昭召,马骁,张新平. Ni2MnGa合金相界面位错结构及马氏体相变晶体学研究[J]. 金属学报, 2013, 49(2): 187-198.
[13] 鲁法云,杨平,孟利,王会珍. Fe-22Mn TRIP/TWIP钢拉伸过程组织、性能及晶体学行为分析[J]. 金属学报, 2013, 49(1): 1-9.
[14] 由洋 王学敏 尚成嘉. 奥氏体化温度对HSLA100高强度低合金钢组织及冲击韧性的影响[J]. 金属学报, 2012, 48(11): 1290-1298.
[15] 肖旋 许辉 秦学智 郭永安 郭建亭 周兰章. 3种铸造镍基高温合金热疲劳行为研究[J]. 金属学报, 2011, 47(9): 1129-1134.