Please wait a minute...
金属学报  2006, Vol. 42 Issue (12): 1285-1290     
  论文 本期目录 | 过刊浏览 |
V12M团簇的电子结构和磁性的第一性原理研究
袁宏宽;陈 洪
西南大学物理科学与技术学院
FIRST-PRINCIPLE INVESTIGATIONS OF THE ELECTRONIC STRUCTURE AND MAGNETISM IN V12TM CLUSTERS
Yuan Hong-Kuan
西南大学物理学院
引用本文:

袁宏宽; 陈洪 . V12M团簇的电子结构和磁性的第一性原理研究[J]. 金属学报, 2006, 42(12): 1285-1290 .
, . FIRST-PRINCIPLE INVESTIGATIONS OF THE ELECTRONIC STRUCTURE AND MAGNETISM IN V12TM CLUSTERS[J]. Acta Metall Sin, 2006, 42(12): 1285-1290 .

全文: PDF(1058 KB)  
摘要: 采用密度泛函理论框架下的广义梯度近似(DFT/GGA), 对V13团簇及V12M掺杂团簇(M=Sc, Ti, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, Tc, Ru)的电子结构和磁性进行研究. 通过对团簇的基态几何构型优化计算得到了团簇束缚能、电子结构以及磁矩的大小, 系统地分析了V13和V12M团簇磁矩的形成机理以及电子结构与磁性的变化关系. 发现掺杂团簇V12Fe和V12Ru为具有大束缚能和大能隙间隔的闭壳电子结构, V12Y团簇具有11 B的大磁矩, 而其它掺杂团簇则表现为弱磁性.
关键词 钒团簇密度泛涵理论电子结构磁性    
Abstract:The density functional theory with the generalized gradient approximation (GGA) is adopted to study the electronic structure and magnetic properties of V13 cluster and doped V12TM clusters (TM: Sc, Ti, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, Tc, Ru, Rh). We obtain the binding energy, electronic structure and magnetism of the clusters. Further more, we analyses the formation of cluster magnetisms and the relationship between magnetic moments and electronic structures of clusters. The results show that V12Fe and V12Ru clusters are the most stable structure being having the closed-shell system with larger binding energies and larger energy gaps between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). V12Y cluster has a giant moment 11μB. The ground states of most clusters are shown to be magnetic, but their magnetic moments are not striking.
Key words
收稿日期: 2006-03-17     
ZTFLH:  O562.1,O482.52  
[1] Reddy B V, Khanna S N. Phys Rev Lett, 1993; 70: 3323
[2] Reuse F A, Khanna S N. Chem Phys Lett, 1995; 234: 77
[3] Ballone P, Jones R O. Chem Phys Lett, 1995; 233: 632
[4] Reuse F A, Khanna S N, Bernel S. Phys Rev, 1995; 52B: 11650
[5] Dieguez O, Alemany M M G, Rey C, Ordejon P, Gallego L J. Phys Rev, 2001; 63B: 205407
[6] Aguilera-Granja F, Bouarab S, Lopez M J, Vega A, Montejano-Carrizales J M, Iniguez M P, Alonso J A. Phys Rev, 1998; 57B: 12469
[7] Kumar V, Kawazoe Y. Phys Rev, 2002; 65B: 125403
[8] Knickelbein M B. Phys Rev, 2003; 67A: 013202
[9] Miguel C, Liu S R, Zhai H J, Wang L S. J Chem Phys, 2003; 118: 2116
[10] Wang S Y, Duan W H, Wang C Y. J Phys, 2002; 35B: 4015
[11] Liu F, Khanna S N, Jena P. Phys Rev, 1991; 43B: 8179
[12] Weber S E, Rao B K, Jena P, Stepanyuk V S, Hergert W, Wildberger K, Zeller R, Dederichs P H. J Phys: Condens Matter, 1997; 9: 10739
[13] Sosa-Hernandez E M, Alvarado-Leyva P G, Montejano- Carrizales J M, Aguilera-Granja F. Revista Mexicana Fisica, 2004; 50: 30
[14] Wu X Y, Raya A K. J Chem Phys, 1999; 110: 2437
[15] Lee K, Callaway J. Phys Rev, 1993; 48B: 15358
[16] Lee K, Callaway J. Phys Rev, 1994; 49B: 13906
[17] Zhao J J, Chen X S, Sun Q, Liu F Q, Wang G H, Lain K D. Physica, 1995; 215B: 377
[18] Dorantes-Davila J, Dreysse H. Phys Rev, 1993; 47B: 3857
[19] Alvarado P, Dorantes-Davila J, Dreysse H. Phys Rev, 1994; 50B: 1039
[20] Sun H Q, Luo Y H, Zhao J J, Wang G H. Phys Status Solidi, 1999; 215b: 1127
[21] Liu F, Khanna S N, Jena P. Z Phys, 1991; 19D: 251
[22] Tanedal A, Shimizu T, Kawazoe Y. J Phys: Condens Matter, 2001; 13: L305
[23] Ratscha C, Fielicke A, Kiriyuk A, Behler J, Helden G V, Meijer G, Scheffler M. J Chem Phys, 2005; 122: 124302
[24] Akoh H, Tasaki A. J Appl Phys, 1978; 49: 1410
[25] Douglass D C, Bucher J P, Bloomfield L A. Phys Rev, 1992; 45B: 6341
[26] Su C X, Hales D A, Armentrout P B. J Chem Phys, 1993; 99: 6613
[27] Wang S Y, Yu J Z, Mizuseki H, Sun Q, Wang C Y, Kawazoe Y. Phys Rev, 2004; 70B: 165413
[28] Li X, Wang L S. Phys Rev, 2002; 65B: 153404
[29] Deng K M, Yang J L, Xiao C Y, Wang K L. J Phys: Condens Matter, 1997; 9: 4925
[30] Becke A D. Phys Rev, 1988; 38A: 3098
[31] Perdew J P, Wang Y. Phys Rev, 1992; 45B: 13244
[32] Spain E M, Morse M D. J Phys Chem, 1992; 96: 2479
[33] Rao B K, Khanna S N, Jena P. Phase Trans, 1990; 24-26: 35
[34] Nayak S K, Khanna S N, Rao B K, Jena P. J Phys Chem, 1997; 101A: 1072
[35] Jahn H A, Teller E. Proc R Soc London, 1937; 161A: 220
[36] Deng K M, Yang J L, Xiao C Y, Wang K L. Phys Rev, 1996; 54B: 11907
[37] Knickelbein M B. Phys Rev, 2005; 71B: 184442
[38] Cox A J, Louderback J G, Bloomfield L A. Phys Rev Lett, 1993; 71: 923s
[1] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[2] 刘路军, 刘政, 刘仁辉, 刘永. Nd90Al10 晶界调控对晶界扩散磁体磁性能和微观结构的影响[J]. 金属学报, 2023, 59(11): 1457-1465.
[3] 皇甫顥, 王子龙, 刘永利, 孟凡顺, 宋久鹏, 祁阳. W1 - x Ir x 固溶合金几何结构、电子结构、力学和热力学性能的第一性原理计算[J]. 金属学报, 2022, 58(2): 231-240.
[4] 王硕, 王俊升. Al-Li合金中 δ′/θ′/δ复合沉淀相结构演化及稳定性的第一性原理探究[J]. 金属学报, 2022, 58(10): 1325-1333.
[5] 项兆龙, 张林, XIN Yan, 安佰灵, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, 王恩刚. Cr含量对FeCrCoSi永磁合金调幅分解组织及其性能的影响[J]. 金属学报, 2022, 58(1): 103-113.
[6] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[7] 白静, 石少锋, 王锦龙, 王帅, 赵骧. Ni-Mn-Ga-Ti铁磁形状记忆合金的相稳定性和磁性能的第一性原理计算[J]. 金属学报, 2019, 55(3): 369-375.
[8] 陈丽群, 邱正琛, 于涛. Ru对NiAl[100](010)刃型位错电子结构的影响[J]. 金属学报, 2019, 55(2): 223-228.
[9] 何贤美, 童六牛, 高成, 王毅超. Nd含量对磁控溅射Si(111)/Cr/Nd-Co/Cr薄膜结构与磁性的影响[J]. 金属学报, 2019, 55(10): 1349-1358.
[10] 黄俊, 罗海文. 退火工艺对含Nb高强无取向硅钢组织及性能的影响[J]. 金属学报, 2018, 54(3): 377-384.
[11] 孙亚超, 朱明刚, 韩瑞, 石晓宁, 俞能君, 宋利伟, 李卫. 各向异性稀土永磁薄膜的磁黏滞性[J]. 金属学报, 2018, 54(3): 457-462.
[12] 耿遥祥,林鑫,羌建兵,王英敏,董闯. Finemet型纳米晶软磁合金的双团簇特征与成分优化[J]. 金属学报, 2017, 53(7): 833-841.
[13] 马殿国,王英敏,李艳辉,张伟. Co含量对熔体快淬Fe55-xCoxPt15B30合金的组织结构与磁性能的影响[J]. 金属学报, 2017, 53(5): 609-614.
[14] 耿遥祥,张志杰,王英敏,羌建兵,董闯,汪海斌,特古斯. 高Fe含量Fe-B-Si-Hf块体非晶合金的结构-性能关联[J]. 金属学报, 2017, 53(3): 369-375.
[15] 白静,李泽,万震,赵骧. Ni-Mn-Ga-Cu铁磁形状记忆合金的晶体结构、相稳定性和磁性能的第一性原理研究[J]. 金属学报, 2017, 53(1): 83-89.