Please wait a minute...
金属学报  2006, Vol. 42 Issue (11): 1171-1176     
  论文 本期目录 | 过刊浏览 |
Gasar工艺获得均匀藕状多孔结构的气压选择
张华伟 李言祥 刘 源
清华大学机械工程系; 先进成形制造教育部重点实验室; 北京 100084
Gas Pressure Condition for Obtaining Uniform Lotus--Type Porous Structure by Gasar Process
ZHANG Huawei; LI Yanxiang; LIU Yuan
Key Laboratory for Advanced Materials Processing Technology; Ministry of Education; Department of Mechanical Engineering; Tsinghua University; Beijing; 100084
引用本文:

张华伟; 李言祥; 刘源 . Gasar工艺获得均匀藕状多孔结构的气压选择[J]. 金属学报, 2006, 42(11): 1171-1176 .
, , . Gas Pressure Condition for Obtaining Uniform Lotus--Type Porous Structure by Gasar Process[J]. Acta Metall Sin, 2006, 42(11): 1171-1176 .

全文: PDF(889 KB)  
摘要: 在用金属-气体共晶定向凝固(Gasar)制备藕状规则多孔金属的工艺中,气体压力是对多孔结构影响最大且最方便调控的工艺参数。本文给出了Gasar工艺中所用气体种类的选择原则,并通过分析Gasar凝固过程,给出了获得指定气孔率且气孔尺寸分布和位置分布都均匀一致的理想藕状多孔结构的气压选择条件,并从以Mg-H系为例的实验结果得到了验证,为实验制备高质量的藕状多孔金属提供了具体的参数指导。
关键词 Gasar定向凝固多孔金属藕状结构共晶    
Abstract:Gas pressure is the effective and most easily controlled parameter for fabricating lotus-type porous metals with long cylindrical regular ordered pores by unidirectional solidification of metal-gas eutectic. The kind of gas which is applicable for Gasar process was discussed in this article. Gas pressure condition for obtaining uniform lotus-type porous structure in which the spatial distribution and the size of pores both are highly uniform has been established through analyzing the influence of gas pressure on the position of eutectic point and solidification mode (eutectic, hypereutectic and hypoeutectic mode), and comparing the homogeneity of lotus-type porous structures obtained under three solidification mode. As an example, the experimental results of magnesium and hydrogen system verified the above theory.
Key wordsGasar    unidirectional solidification    porous metal    lotus-type structure    eutectic
收稿日期: 2006-03-28     
ZTFLH:  TG249  
[1] Shapovalov V I. US Pat, 5 181 549, 1993
[2] Shapovalov V I. MRS Bull, 1994; 4: 24
[3] Liu Y, Li Y X, Wan J, Zhang H W. Mater Sci Eng, 2005; A402: 47
[4] Li Y X, Liu Y, Zhang H W, Wang X. In: Nakajima H, Kanetake N eds., Proceedings of Metal Foam 2005, Osaka: The Japan Institute of Metals, 2006: 237
[5] Shapovalov V I, Boyko L. Adv Eng Mater, 2004; 6: 407
[6] Wolla J M, Provenzano V. Mater Res Soc Symp Proc, 1995; 371: 377
[7] Kovacik J. Acta Mater, 1998; 46: 5413
[8] Simone A E, Gibson L J. Acta Mater, 1996; 44: 1463
[9] Hyun S K, Murakami K, Nakajima H. Mater Sci Eng, 2001; A299: 241
[10] Xie Z K, Ikeda T, Okuda Y, Nakajima H. Mater Sci Eng, 2004; A386: 390
[11] Xie Z K, Ikeda T, Okuda Y, Nakajima H. Mater Sci Forum, 2004; 449-452: 661
[12] Ogushi T, Chiba H, Nakajima H, Ikeda T. J Appl Phys, 2004; 95: 5843
[13] Tane M, Hyun S K, Nakajima H. J Appl Phys, 2005; 97: 103701
[14] Liu Y, Li Y X, Zhang H W, Wan J. Acta Metall Sin, 2005; 41: 886 (刘源,李言祥,张华伟,万疆.金属学报,2005;41:886)
[15] Liu Y, Li Y X, Zhang H W, Wan J. Rare Met Mater Eng, 2005; 34: 1128 (刘源,李言祥,张华伟,万疆.稀有金属材料与工程, 2005;34:1128)
[16] Liu Y, Li Y X, Zhang H W. Acta Metall Sin, 2004; 40: 1121 (刘源,李言祥,张华伟.金属学报, 2004;40:1121)
[17] Xie Z K, Ikeda T, Okuda Y, Nakajima H. Mater Sci Forum, 2004; 449-452: 661
[18] Nakajima H, Hyun S K, Ohashi K, Ota K, Murakami K. Colloids Surf, 2001; A179: 209
[19] Suematsu Y, Hyun S K, Nakajima H. J Jpn Inst Met, 2004; 68: 257 (末松佳记,玄丞均,中屿英雄.日本金属学会志, 2004;68: 257)
[20] Ikeda T, Aoki T, Nakajima H. Metall Mater Trans, 2005; A36: 77 (玄丞均,池田辉之,中(?)英雄.日本金属学会志, 2004;68: 39)
[21] Nakahata T, Nakajima H. Mater Sci Eng, 2004; A384: 373
[22] Hyun S K, Ikeda T, Nakajima H. J Jpn Inst Met, 2004; 68: 39
[23] Hyun S K, Ikeda T, Nakajima H. Sci Technol Adv Mater, 2004; 5: 201
[24] Hyun S K, Nakajima H. Adv Eng Mater, 2002; 4: 741
[25] Nakahata T, Nakajima H. Mater Trans, 2005; 46: 587
[26] Yasuda H, Ohnaka I, Dhindaw B W, Takezawa N, Fujimoto S, Nagira T, Tsuchiyama A, Nakano T, Uesugi K. In: Nakajima H, Kanetake N, eds., Proceedings of Met Foam 2005, Osaka: The Japan Institute of Metals, 2006: 289
[27] Liu Y, Li Y X, Zhang H W, Wan J. Spec Cast Nonferrous Alloy, 2005; 25: 1 (刘源,李言祥,张华伟,万疆.特种铸造及有色合金, 2005;25:1)
[28] An G Y. Formation Theory of Castings. Beijing: China Machine Press, 1989: 173 (安阁英.铸件形成理论.北京:机械工业出版社,1989:173)
[29] Shapovalov V I, Semik A P, Timchenko A G. Russ Metall, 1993; (3): 21
[30] Yamamura S, Shiota H, Murakami K. Mater Sci Eng, 2001; A318: 137
[31] Schwarz H, Exner H E. J Microsc, 1983; 129: 155
[32] Zhang H W, Li Y X, Liu Y. Acta Metall Sin, 2005; 41: 55 (张华伟,李言祥,刘源.金属学报, 2005;41:55)
[33] Liu Y, Li Y X, Wan J, Zhang H W. In: Nakajima H, Kanetake N eds., Proceedings of Met Foam 2005, Osaka: The Japan Institute of Metals, 2006: 241
[1] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[4] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[5] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[6] 张丽丽, 吉宗威, 赵九洲, 何杰, 江鸿翔. 亚共晶Al-Si合金中微量元素La变质共晶Si的关键影响因素[J]. 金属学报, 2023, 59(11): 1541-1546.
[7] 段慧超, 王春阳, 叶恒强, 杜奎. 纳米多孔金属表面结构与成分的三维电子层析表征[J]. 金属学报, 2023, 59(10): 1291-1298.
[8] 冯迪, 朱田, 臧千昊, 李胤樹, 范曦, 张豪. 喷射成形过共晶AlSiCuMg合金的固溶行为[J]. 金属学报, 2022, 58(9): 1129-1140.
[9] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[10] 徐文策, 崔振铎, 朱胜利. 开孔多孔金属材料在电催化及生物医用领域的研究进展[J]. 金属学报, 2022, 58(12): 1527-1544.
[11] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[12] 张少华, 谢光, 董加胜, 楼琅洪. 单晶高温合金共晶溶解行为的差热分析[J]. 金属学报, 2021, 57(12): 1559-1566.
[13] 马德新, 赵运兴, 徐维台, 皮立波, 李重行. 高温合金单晶铸件中共晶组织分布的表面效应[J]. 金属学报, 2021, 57(12): 1539-1548.
[14] 许军锋, 张宝东, Peter K Galenko. 含有化合物相的共晶转变理论模型[J]. 金属学报, 2021, 57(10): 1320-1332.
[15] 和思亮, 赵云松, 鲁凡, 张剑, 李龙飞, 冯强. 热等静压对铸态及固溶态第二代镍基单晶高温合金显微缺陷及持久性能的影响[J]. 金属学报, 2020, 56(9): 1195-1205.