Please wait a minute...
金属学报  2006, Vol. 42 Issue (11): 1165-1170     
  论文 本期目录 | 过刊浏览 |
藕状规则多孔Cu气孔率的理论预测
张华伟 李言祥 刘源
清华大学机械工程系; 先进成形制造教育部重点实验室; 北京 100084
Evaluation of Porosity in Lotus--Type Porous Cu Fabricated with Gasar Process
ZHANG Huawei; LI Yanxiang; LIU Yuan
Key Laboratory for Advanced Materials Processing Technology; Ministry of Education; Department of Mechanical Engineering; Tsinghua University; Beijing; 100084
引用本文:

张华伟; 李言祥; 刘源 . 藕状规则多孔Cu气孔率的理论预测[J]. 金属学报, 2006, 42(11): 1165-1170 .
, , . Evaluation of Porosity in Lotus--Type Porous Cu Fabricated with Gasar Process[J]. Acta Metall Sin, 2006, 42(11): 1165-1170 .

全文: PDF(842 KB)  
摘要: 采用定向凝固技术,在氢气或氢气和氩气的混合气氛中制备得到了藕状规则多孔铜。通过求解稳态凝固界面前沿的溶质场,获得了氢在金属固相中的浓度分布,进而建立了气孔率计算的理论模型。考虑凝固速率和扩散系数的影响,用该模型预测的理论气孔率与实验结果得到了很好的吻合。同时也获得了Gasar凝固试样的气孔率随气体分压变化而变化的规律。
关键词 Gasar定向凝固多孔金属藕状结构气孔率    
Abstract:Lotus-type porous copper with elongated pores has been fabricated by a unidirectional solidification method under a pressurized hydrogen or gas mixture of hydrogen and argon. Through solving the steady-state solute distribution function before the solidification front, the hydrogen content in the solid metal was calculated and a new theoretical model for calculating porosity was founded. Solidification velocity and the diffusivity of hydrogen were taken into account and the predicted porosity values are in good agreement with the experimental results under different partial pressures of hydrogen and argon. In addition, the relationship between porosity and partial pressures of mixed gases was obtained.
Key wordsGasar    unidirectional solidification    porous metal    lotus-type structure    porosity
收稿日期: 2006-03-28     
ZTFLH:  TG249  
[1] Banhart J. Prog Mater Sci, 2001; 46: 559
[2] Shapovalov V I. US Pat, 5 181 549, 1993
[3] Shapovalov V I. Mater Res Soc Symp Proc, 1998; 521: 281
[4] Nakajima H. Metall Mater Trans, 2001; 42: 1827
[5] Liu Y, Li Y X, Zhang H W. Acta Metall Sin, 2004; 40: 1121 (刘源,李言祥,张华伟.金属学报,2004;40:1121)
[6] Liu Y, Li Y X. Scr Mater, 2003; 49: 379
[7] Liu Y, Li Y X. Trans Nonferrous Met Soc Chin, 2003; 13: 830
[8] Zhang H W, Li Y X, Liu Y. Acta Metall Sin, 2005; 41: 55 (张华伟,李言祥,刘源.金属学报,2005;41:55)
[9] Liu Y, Li Y X, Wan J, Zhang H W. Mater Sci Eng, 2005; A402: 47
[10] Liu Y, Li Y X, Zhang H W, Wan J. flare Met Mater Eng, 2005; 34: 1128 (刘源,李言祥,张华伟,万疆.稀有金属材料与工程, 2005;34:1128)
[11] Liu Y, Li Y X, Zhang H W, Wan J. Acta Metall Sin, 2005; 41: 886 (刘源,李言祥,张华伟,万疆.金属学报,2005;41:886)
[12] Apprill J M, Poirier D R, Maguire M C. Mater Res Soc Symp Proc, 1998; 521: 291
[13] Yamamura S, Shiota H, Murakami K, Nakajima H. Mater Sci Eng, 2003; A318: 137
[14] Jackson K A, Hunt J D. Thins Metall Soc ASME, 1966; 236: 1129
[15] Fisher D J. Hydrogen Diffusion in Metals: A 30-Year Retrospective. Switzerland: Scitec Publications Ltd, 1999: 48
[1] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[4] 段慧超, 王春阳, 叶恒强, 杜奎. 纳米多孔金属表面结构与成分的三维电子层析表征[J]. 金属学报, 2023, 59(10): 1291-1298.
[5] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[6] 徐文策, 崔振铎, 朱胜利. 开孔多孔金属材料在电催化及生物医用领域的研究进展[J]. 金属学报, 2022, 58(12): 1527-1544.
[7] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[8] 张小丽, 冯丽, 杨彦红, 周亦胄, 刘贵群. 二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响[J]. 金属学报, 2020, 56(7): 969-978.
[9] 徐秀月, 李艳辉, 张伟. Fe(Pt, Ru)B非晶带材脱合金制备纳米多孔PtRuFe及其甲醇电催化性能[J]. 金属学报, 2020, 56(10): 1393-1400.
[10] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[11] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[12] 唐文书,肖俊峰,李永君,张炯,高斯峰,南晴. 再热恢复处理对蠕变损伤定向凝固高温合金γ′相的影响[J]. 金属学报, 2019, 55(5): 601-610.
[13] 方辉,薛桦,汤倩玉,张庆宇,潘诗琰,朱鸣芳. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟[J]. 金属学报, 2019, 55(5): 664-672.
[14] 杨燕, 杨光昱, 罗时峰, 肖磊, 介万奇. Mg-14.61Gd合金的定向凝固组织及生长取向[J]. 金属学报, 2019, 55(2): 202-212.
[15] 金浩, 贾清, 刘荣华, 线全刚, 崔玉友, 徐东生, 杨锐. 籽晶制备及Ti-47Al合金PST晶体取向控制[J]. 金属学报, 2019, 55(12): 1519-1526.