Please wait a minute...
金属学报  2004, Vol. 40 Issue (3): 257-262     
  论文 本期目录 | 过刊浏览 |
用人工神经网络法预测镍基单晶高温合金的蠕变断裂寿命
李军伟; 彭志方
武汉大学动力与机械学院
Artificial Neural Network Prediction of Creep Rupture Life of Nickel Base Single Crystal Superalloys
LI Junwei; PENG Zhifang
Department of Materials Engineering; College of Power and Mechanical Engineering;
引用本文:

李军伟; 彭志方 . 用人工神经网络法预测镍基单晶高温合金的蠕变断裂寿命[J]. 金属学报, 2004, 40(3): 257-262 .
, . Artificial Neural Network Prediction of Creep Rupture Life of Nickel Base Single Crystal Superalloys[J]. Acta Metall Sin, 2004, 40(3): 257-262 .

全文: PDF(14388 KB)  
摘要: 根据大量镍基单晶高温合金在不同温度和应力下的蠕变断裂寿命数据, 采用一种先进的人工神经网络方法建立运算模型, 对合金在不同实验或运行条件下的蠕变断裂寿命进行了预测, 并将测算结果与现有其它方法进行了比较. 结果表明, 所建网络能较准确预测第一、二、三代镍基单晶合金的蠕变断裂寿命. 将正交试验分析与网络预测相结合, 获得在982℃/250 MPa下给定合金成分范围的各元素对其蠕变断裂寿命影响程度的排序.
关键词 镍基单晶高温合金神经网络    
Abstract:Based on an advanced neural network method and a huge number of creep rupture life data of nickel base single crystal superalloys, an artificial neural network model is constructed to predict creep rupture life for different types of nickel-base single crystal superalloys. The results indicate that the creep rupture lives can be more accurately predicted with this method for different generations of nickel-base single crystal superalloys. Combined with neural network prediction, the orthogonal analysis method is used to reveal the influence of alloying elements on creep rupture life of the single crystal superalloys with the given composition under 982℃/250 MPa.
Key wordsnickel base single crystal superalloy   
收稿日期: 2003-03-11     
ZTFLH:  TG111  
[1] Gui Z L, Chen L J. Mater Eng, 1992; 2(桂忠楼,陈立江.材料工程,1992:2)
[2] Yoo Y S, Jo C Y, Jones C N. Mater Sci Eng, 2002; 22-29
[3] Yamazaki M, Yamagata T, Harada H. USP4707192, 1987; 11
[4] Maurer G, Boesch W J, Theret J M. USP4629521, 1986; 12
[5] Duhl D N, Cetel A D. USP4719080, 1988; 1
[6] Duhl D N, Olson W E. USP4209348, 1980; 6
[7] Schweizer F A, Duhl D N. USP4222794, 1980; 9
[8] Duhl D N, Nguyen-Dinh X. USP4371404, 1983; 2
[9] Duhl D N, Cetel A D. USP4402772, 1983; 9
[10] Fedholm A, Daridson J H, Khan T, Theret J C F. USP4639280, 1987; 1
[11] Schweizer F A. USP4765850, 1988; 8
[12] Yamagata T, Harada H, Yamazaki M. USP4830679, 1989; 5
[13] Naik S K. USP4885216, 1989; 12
[14] Chin S, Duhl D N. USP4908183, 1990; 3
[15] Nguyen-Dinh X. USP4935072, 1990; 6
[16] Schweizer F A, Nguyen-Dinh X. USP5077004, 1991; 12
[17] Ross E W, Wukusick C S, King W T. USP5399313, 1995; 3
[18] Konter M, Newnham M, Tonners C. USP5888451, 1999; 3
[19] Wukusick C S, Tom T, Buchakjian Jr L. USP416942, 1979; 10
[20] Shaw S W. USP4207098, 1980; 6
[21] Yamazaki M, Harada H. USP4205985, 1980; 6
[22] Wukusick C S, Buchakjian Jr L, Daralio R. USP5100484, 1992; 3
[23] Das N. USP5925198, 1999; 7
[24] Tamaki H, Yoshinari A, Okayama A, Kobayashi M, ??Kageyama K, Ohno T. USP6051083, 2000; 4
[25] Baldwin J F. USPRE29920, 1979; 2
[26] Yukawa N, Morinaga M. USP4824637, 1989; 4
[27] Erikson G L. USP5366695, 1994; 11
[28] Harris K, Wahl J B. USP20020164263, 2002; 11
[29] Chong S. Theories and Applications of Neural Network for MATLAB Toolbox. Hefei: Chinese University of Science and Technology Press, 1998; 8(丛爽.面向MATLAB工具箱的神经网络理论与应用.合肥:中国科学技术大学出版社,1998;8)
[30] Lou S T, Shi Y. System Analysis and Design Based on MATLAB-Neural Network. Xian: Xian University of Electron Science and Technology Press, 1998; 6(楼顺天,施阳.基于MATLAB的系统分析与设计--神经网络.西安;西安电子科技大学出版社,1998;6)
[31] Jiao L C. Neural Network Algorithms. Xian: Xian University of Electron Science and Technology Press, 1993:9(焦李成.神经网络计算.西安:西安电子科技大学出版社,1993;9)
[32] Yoshitake S, Narayan V, Harada H, Bhadeshia H K D H, Mackay D J C. ISIJ International, 1998; No. 5:495
[33] Harada H, Yamagata T, Nakazawa S, Ohno K, Yamazaki M. Proc of a Conf, "High Temperature Materials for Power Engineering 1990". Liege, Belgium, 1990; 1319
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 冀秀梅, 侯美伶, 王龙, 刘玠, 高克伟. 基于机器学习的中厚板变形抗力模型建模与应用[J]. 金属学报, 2023, 59(3): 435-446.
[3] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[4] 徐静辉, 李龙飞, 刘心刚, 李辉, 冯强. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响[J]. 金属学报, 2021, 57(2): 205-214.
[5] 和思亮, 赵云松, 鲁凡, 张剑, 李龙飞, 冯强. 热等静压对铸态及固溶态第二代镍基单晶高温合金显微缺陷及持久性能的影响[J]. 金属学报, 2020, 56(9): 1195-1205.
[6] 胡斌,李树索,裴延玲,宫声凯,徐惠彬. <111>取向小角偏离对一种镍基单晶高温合金蠕变性能的影响[J]. 金属学报, 2019, 55(9): 1204-1210.
[7] 马晋遥,王晋,赵云松,张剑,张跃飞,李吉学,张泽. 一种第二代镍基单晶高温合金1150 ℃原位拉伸断裂机制研究[J]. 金属学报, 2019, 55(8): 987-996.
[8] 张宇, 王清, 董红刚, 董闯, 张洪宇, 孙晓峰. 基于团簇模型设计的镍基单晶高温合金(Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W)及其在900 ℃下1000 h的长期时效行为[J]. 金属学报, 2018, 54(4): 591-602.
[9] 郭静, 李金国, 刘纪德, 黄举, 孟祥斌, 孙晓峰. 低偏析异质籽晶制备单晶高温合金的籽晶熔合区形成机制研究[J]. 金属学报, 2018, 54(3): 419-427.
[10] 王博,张军,潘雪娇,黄太文,刘林,傅恒志. W对第三代镍基单晶高温合金组织稳定性的影响[J]. 金属学报, 2017, 53(3): 298-306.
[11] 余滨杉,王社良,杨涛,樊禹江. 基于遗传算法优化的SMABP神经网络本构模型[J]. 金属学报, 2017, 53(2): 248-256.
[12] 濮晟,谢光,王莉,潘智毅,楼琅洪. Re和W对铸态镍基单晶高温合金再结晶的影响*[J]. 金属学报, 2016, 52(5): 538-548.
[13] 郁峥嵘,丁贤飞,曹腊梅,郑运荣,冯强. 第二、三代镍基单晶高温合金含Hf过渡液相连接*[J]. 金属学报, 2016, 52(5): 549-560.
[14] 王玉敏,李双明,钟宏,傅恒志. 定向凝固DD6单晶高温合金枝晶组织均匀性研究[J]. 金属学报, 2015, 51(9): 1038-1048.
[15] 濮晟, 谢光, 郑伟, 王栋, 卢玉章, 楼琅洪, 冯强. W和Re对固溶态镍基单晶高温合金变形和再结晶的影响*[J]. 金属学报, 2015, 51(2): 239-248.