Please wait a minute...
金属学报  2014, Vol. 50 Issue (5): 610-618    DOI: 10.3724/SP.J.1037.2013.00659
  论文 本期目录 | 过刊浏览 |
RE对过共晶Al-80%Si合金凝固特性的影响*
文强, 坚增运, 朱满, 常芳娥, 党博
(西安工业大学陕西省光电功能材料与器件重点实验室, 西安 710021)
EFFECTS OF RE ON THE SOLIDIFICAIION CHARACTERISTICS OF Al-80%Si ALLOY
WEN Qiang, JIAN Zengyun, ZHU Man, CHANG Fang'e, DANG Bo
Shaanxi Province Key Laboratory of Photoelectric Functional Materials and Devices, Xi'an Technological University, Xi'an 710021
全文: PDF(14707 KB)   HTML
摘要: 

利用高速摄影仪和SEM研究了RE对Al-80%Si合金凝固过程中再辉界面形貌、初生Si形貌和凝固后组织的影响. 结果发现, 加入RE前后的Al-80%Si合金均存在2个临界过冷度DT1和DT2, 在过冷度小于DT1时, 初生Si的形貌为粗大的长片状, 表面有明显的棱角; 过冷度大于DT2后, 合金在凝固过程中的再辉界面为平面状, 凝固后的初生Si形貌为均匀、细小、表面有光滑凸起的球状, 并且晶粒表面的棱角消失; 当过冷度在DT1与DT2之间时, 合金在凝固过程中的再辉界面为树枝状, 凝固后的初生Si形貌部分为表面有棱角的片状和块状, 部分为表面无棱角的球状. 对于Al-80%Si合金而言, DT1和DT2分别约为132和250 K. RE能降低Al-80%Si合金DT1和DT2的值, 对于Al-80%Si-1%RE而言, DT1和DT2分别约为60和199 K.

关键词 Al-Si合金初生SiRE过冷度组织    
Abstract:Effects of rare earth (RE) on the morphologies of the recalescence interface, the growing primary Si during the solidification process and the structure after solidification of Al-80%Si alloy were investigated by means of high speed camera and SEM. The critical undercooling and for the morphology transition of the recalescence interface, the growing primary Si and the structure have been obtained. When the undercooling is lower than , the morphology of the growing crystal during the solidification process is flake-like; and the structure after the solidification process is composed of large flake grains with pronounced edges and faces. When the undercooling is greater than , the recalescence interface is a parallel one, and the structure after solidification is composed of homogenous and fine grains, and there exist several smooth spherical bulges on the surface of each grain. In the undercooling region from to , the recalescence interface and the growing crystal show dendritic features, but some of the dendrites are distributed regularly; after solidification, the structure is composed of refined equiaxed grains and flake grains. For Al-80%Si alloy, and are equal to 132 and 250 K, respectively. RE can reduce the values of and . When 1%RE is added into the alloy, and are changed to 60 and 199 K, respectively.
Key wordsAl-Si alloy    primary Si    RE    undercooling    structure
收稿日期: 2013-10-17     
ZTFLH:  TG111.4  
基金资助:*国家重点基础研究发展计划项目2011CB610403, 以及国家自然科学基金项目51371133, 51071115和51171136资助
Corresponding author: JIAN Zengyun, professor, Tel: (029)86173321, E-mail: jianzengyun@xatu.edu.cn   
作者简介: 文 强, 男, 1987年生, 硕士生

引用本文:

文强, 坚增运, 朱满, 常芳娥, 党博. RE对过共晶Al-80%Si合金凝固特性的影响*[J]. 金属学报, 2014, 50(5): 610-618.
WEN Qiang, JIAN Zengyun, ZHU Man, CHANG Fang'e, DANG Bo. EFFECTS OF RE ON THE SOLIDIFICAIION CHARACTERISTICS OF Al-80%Si ALLOY. Acta Metall Sin, 2014, 50(5): 610-618.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00659      或      https://www.ams.org.cn/CN/Y2014/V50/I5/610

[1] Zuo M, Jiang K F, Liu X F. J Alloys Compd, 2010; 503: L26
[2] Faraji M, Todd I, Jones H. J Mater Sci, 2005; 40: 6363
[3] Jiang Q C, Xu C L, Lu M, Wang H Y. Mater Lett, 2005; 59: 624
[4] Yi H, Zhang D. Mater Lett, 2003; 57: 2523
[5] Ohmi T, Matsuura K, Kudoh M. J Jpn Inst Light Met, 1998; 48: 618
[6] Jian Z Y, Zhu M, Jie W Q. Mater China, 2010; 29: 20
(坚增运, 朱 满, 介万奇. 中国材料进展, 2010; 29: 20)
[7] Hernandez F C R, Sokolowski J H. J Alloys Compd, 2006; 426: 205
[8] Jin F W, Ren Z M, Ren W L, Deng K, Zhong Y B, Yu J B. Sci Technol Adv Mater, 2008; 9: 024202
[9] Xu C L, Wang H Y, Yang F Y, Jiang Q C. Mater Sci Eng, 2007; A452: 341
[10] Zuo M, Liu X F, Sun Q Q, Jiang K. J Mater Process Technol, 2009; 209: 5504
[11] Zhang Q, Liu X F, Dai H S. J Alloys Compd, 2009; 480: 376
[12] Yu L N, Liu X F, Ding H M, Bian X F. J Alloys Compd, 2007; 432: 156
[13] Zuo M, Zhao D G, Teng X Y, Geng H R, Zhang Z S. Mater Des, 2013; 47: 857
[14] Wu Y P, Wang S J, Li H, Liu X F. J Alloys Compd, 2009; 477: 139
[15] Shi W X, Gao B, Tu G F, Li S W, Hao Y, Yu F X. J Rare Earth, 2010; 28: 367
[16] Chang J Y, Kim G H, Moon I G, Choi C S. Scr Mater, 1998; 39: 307
[17] Chen C, Liu Z X, Ren B, Wang M X, Weng Y G, Liu Z Y. Trans Nonferrous Met Soc China, 2007; 17: 301
[18] Li Q L, Xia T D, Lan Y F, Li P F, Fan L. Mater Sci Eng, 2013; A588: 97
[19] Wei B K, Lin H T, Liu J M, Cai Q Z, Tong X L, Mao Y F. Spec Cast Nonferrous Alloys, 1993; (3): 6
(魏伯康, 林汉同, 刘俊明, 蔡启舟, 童杏林, 毛玉凤. 特种铸造及有色合金, 1993; (3): 6)
[20] Xu C L, Jiang Q C, Yang Y F, Wang H Y, Wang J G. J Alloys Compd, 2006; 422: L1
[21] Shi W X, Gao B, Tu G F, Li S W. J Alloys Compd, 2010; 508: 480
[22] Li Q L, Xia T D, Lan Y F, Zhao W J, Fan L, Li P F. J Alloys Compd, 2013; 562: 25
[23] Jian Z Y, Nagashio K, Kuribayashi K. Metall Mater Trans, 2002; 33A: 2947
[24] Jian Z Y, Kuribayashi K, Jie W Q, Chang F E. Acta Mater, 2006; 54: 3227
[25] Liu R P, Volkmann T, Herlach D M. Acta Mater, 2001; 49: 439
[26] Wang Q, Liu R P, Qian Y Q, Lou D C, Su Z B, Ma M Z, Wang W K, Panofen C, Herlach D M. Scr Mater, 2006; 54: 37
[27] Lu S Z, Hellawell A. Metall Mater Trans, 1987; 18A: 1721
[28] Jian Z Y, Yang X Q, Chang F E, Jie W Q. Metall Mater Trans, 2010; 41A: 1826
[29] David R L. CRC Handbook of Chemistry and Physics. Tokyo: CRC Press, 1989: B2
[30] Jian Z Y, Kuribayashi K, Jie W Q. Acta Mater, 2004; 52: 3323
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 于家英, 王华, 郑伟森, 何燕霖, 吴玉瑞, 李麟. 热浸镀锌高强汽车板界面组织对其拉伸断裂行为的影响[J]. 金属学报, 2020, 56(6): 863-873.
[3] 孙飞龙, 耿克, 俞峰, 罗海文. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系[J]. 金属学报, 2020, 56(5): 693-703.
[4] 刘震鹏, 闫志巧, 陈峰, 王顺成, 龙莹, 吴益雄. 金刚石工具用Cu-10Sn-xNi合金的制备和性能表征[J]. 金属学报, 2020, 56(5): 760-768.
[5] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[6] 李根, 兰鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714.
[7] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[8] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[9] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[10] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[11] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
[12] 王涛,万志鹏,李钊,李佩桓,李鑫旭,韦康,张勇. 热处理工艺对GH4720Li合金细晶铸锭组织与热加工性能的影响[J]. 金属学报, 2020, 56(2): 182-192.
[13] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
[14] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[15] 马小强,杨坤杰,徐喻琼,杜晓超,周建军,肖仁政. 金属Nb级联碰撞的分子动力学模拟[J]. 金属学报, 2020, 56(2): 249-256.