Please wait a minute...
金属学报  2014, Vol. 50 Issue (5): 610-618    DOI: 10.3724/SP.J.1037.2013.00659
  本期目录 | 过刊浏览 |
RE对过共晶Al-80%Si合金凝固特性的影响*
文强, 坚增运(), 朱满, 常芳娥, 党博
西安工业大学陕西省光电功能材料与器件重点实验室, 西安 710021
EFFECTS OF RE ON THE SOLIDIFICAIION CHARACTERISTICS OF Al-80%Si ALLOY
WEN Qiang, JIAN Zengyun(), ZHU Man, CHANG Fang'e, DANG Bo
Shaanxi Province Key Laboratory of Photoelectric Functional Materials and Devices, Xi'an Technological University, Xi'an 710021
引用本文:

文强, 坚增运, 朱满, 常芳娥, 党博. RE对过共晶Al-80%Si合金凝固特性的影响*[J]. 金属学报, 2014, 50(5): 610-618.
Qiang WEN, Zengyun JIAN, Man ZHU, Fang'e CHANG, Bo DANG. EFFECTS OF RE ON THE SOLIDIFICAIION CHARACTERISTICS OF Al-80%Si ALLOY[J]. Acta Metall Sin, 2014, 50(5): 610-618.

全文: PDF(14707 KB)   HTML
摘要: 

利用高速摄影仪和SEM研究了RE对Al-80%Si合金凝固过程中再辉界面形貌、初生Si形貌和凝固后组织的影响. 结果发现, 加入RE前后的Al-80%Si合金均存在2个临界过冷度?T1和?T2, 在过冷度小于?T1时, 初生Si的形貌为粗大的长片状, 表面有明显的棱角; 过冷度大于?T2后, 合金在凝固过程中的再辉界面为平面状, 凝固后的初生Si形貌为均匀、细小、表面有光滑凸起的球状, 并且晶粒表面的棱角消失; 当过冷度在?T1与?T2之间时, 合金在凝固过程中的再辉界面为树枝状, 凝固后的初生Si形貌部分为表面有棱角的片状和块状, 部分为表面无棱角的球状. 对于Al-80%Si合金而言, ?T1和?T2分别约为132和250 K. RE能降低Al-80%Si合金?T1和?T2的值, 对于Al-80%Si-1%RE而言, ?T1和?T2分别约为60和199 K.

关键词 Al-Si合金初生SiRE过冷度组织    
Abstract

Effects of rare earth (RE) on the morphologies of the recalescence interface, the growing primary Si during the solidification process and the structure after solidification of Al-80%Si alloy were investigated by means of high speed camera and SEM. The critical undercooling ?T1 and ?T2 for the morphology transition of the recalescence interface, the growing primary Si and the structure have been obtained. When the undercooling is lower than ?T1, the morphology of the growing crystal during the solidification process is flake-like; and the structure after the solidification process is composed of large flake grains with pronounced edges and faces. When the undercooling is greater than ?T2, the recalescence interface is a parallel one, and the structure after solidification is composed of homogenous and fine grains, and there exist several smooth spherical bulges on the surface of each grain. In the undercooling region from ?T1 to ?T2 , the recalescence interface and the growing crystal show dendritic features, but some of the dendrites are distributed regularly; after solidification, the structure is composed of refined equiaxed grains and flake grains. For Al-80%Si alloy, ?T1 and ?T2 are equal to 132 and 250 K, respectively. RE can reduce the values of ?T1 and ?T2 . When 1%RE is added into the alloy,?T1 and ?T2 are changed to 60 and 199 K, respectively.

Key wordsAl-Si alloy    primary Si    RE    undercooling    structure
收稿日期: 2013-10-17     
ZTFLH:  TG111.4  
基金资助:*国家重点基础研究发展计划项目2011CB610403, 以及国家自然科学基金项目51371133, 51071115和51171136资助
图1  
图 2  
图 3  
图 4  
图 5  
[1] Zuo M, Jiang K F, Liu X F. J Alloys Compd, 2010; 503: L26
[2] Faraji M, Todd I, Jones H. J Mater Sci, 2005; 40: 6363
[3] Jiang Q C, Xu C L, Lu M, Wang H Y. Mater Lett, 2005; 59: 624
[4] Yi H, Zhang D. Mater Lett, 2003; 57: 2523
[5] Ohmi T, Matsuura K, Kudoh M. J Jpn Inst Light Met, 1998; 48: 618
[6] Jian Z Y, Zhu M, Jie W Q. Mater China, 2010; 29: 20
[6] (坚增运, 朱 满, 介万奇. 中国材料进展, 2010; 29: 20)
[7] Hernandez F C R, Sokolowski J H. J Alloys Compd, 2006; 426: 205
[8] Jin F W, Ren Z M, Ren W L, Deng K, Zhong Y B, Yu J B. Sci Technol Adv Mater, 2008; 9: 024202
[9] Xu C L, Wang H Y, Yang F Y, Jiang Q C. Mater Sci Eng, 2007; A452: 341
[10] Zuo M, Liu X F, Sun Q Q, Jiang K. J Mater Process Technol, 2009; 209: 5504
[11] Zhang Q, Liu X F, Dai H S. J Alloys Compd, 2009; 480: 376
[12] Yu L N, Liu X F, Ding H M, Bian X F. J Alloys Compd, 2007; 432: 156
[13] Zuo M, Zhao D G, Teng X Y, Geng H R, Zhang Z S. Mater Des, 2013; 47: 857
[14] Wu Y P, Wang S J, Li H, Liu X F. J Alloys Compd, 2009; 477: 139
[15] Shi W X, Gao B, Tu G F, Li S W, Hao Y, Yu F X. J Rare Earth, 2010; 28: 367
[16] Chang J Y, Kim G H, Moon I G, Choi C S. Scr Mater, 1998; 39: 307
[17] Chen C, Liu Z X, Ren B, Wang M X, Weng Y G, Liu Z Y. Trans Nonferrous Met Soc China, 2007; 17: 301
[18] Li Q L, Xia T D, Lan Y F, Li P F, Fan L. Mater Sci Eng, 2013; A588: 97
[19] Wei B K, Lin H T, Liu J M, Cai Q Z, Tong X L, Mao Y F. Spec Cast Nonferrous Alloys, 1993; (3): 6
[19] (魏伯康, 林汉同, 刘俊明, 蔡启舟, 童杏林, 毛玉凤. 特种铸造及有色合金, 1993; (3): 6)
[20] Xu C L, Jiang Q C, Yang Y F, Wang H Y, Wang J G. J Alloys Compd, 2006; 422: L1
[21] Shi W X, Gao B, Tu G F, Li S W. J Alloys Compd, 2010; 508: 480
[22] Li Q L, Xia T D, Lan Y F, Zhao W J, Fan L, Li P F. J Alloys Compd, 2013; 562: 25
[23] Jian Z Y, Nagashio K, Kuribayashi K. Metall Mater Trans, 2002; 33A: 2947
[24] Jian Z Y, Kuribayashi K, Jie W Q, Chang F E. Acta Mater, 2006; 54: 3227
[25] Liu R P, Volkmann T, Herlach D M. Acta Mater, 2001; 49: 439
[26] Wang Q, Liu R P, Qian Y Q, Lou D C, Su Z B, Ma M Z, Wang W K, Panofen C, Herlach D M. Scr Mater, 2006; 54: 37
[27] Lu S Z, Hellawell A. Metall Mater Trans, 1987; 18A: 1721
[28] Jian Z Y, Yang X Q, Chang F E, Jie W Q. Metall Mater Trans, 2010; 41A: 1826
[29] David R L. CRC Handbook of Chemistry and Physics. Tokyo: CRC Press, 1989: B2
[30] Jian Z Y, Kuribayashi K, Jie W Q. Acta Mater, 2004; 52: 3323
[1] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[8] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 郭福, 杜逸晖, 籍晓亮, 王乙舒. 微电子互连用锡基合金及复合钎料热-机械可靠性研究进展[J]. 金属学报, 2023, 59(6): 744-756.
[12] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[13] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[14] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[15] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.