Please wait a minute...
金属学报  2014, Vol. 50 Issue (3): 355-360    DOI: 10.3724/SP.J.1037.2013.00478
  论文 本期目录 | 过刊浏览 |
NZ30K镁合金时效析出动力学与强化模型的研究*
王小娜1) 韩利战1,2) 顾剑锋1,2)
1) 上海交通大学材料科学与工程学院, 上海 200240
2) 上海市激光制造与材料改性重点实验室, 上海 200240
PRECIPITATION KINETICS AND YIELD STRENGTH MODEL FOR NZ30K-Mg ALLOY
WANG Xiaona 1), HAN Lizhan 1,2), GU Jianfeng 1,2)
1) School of Materials Science and Engineering, Shanghai Jiaotong University, Shanghai 200240
2) Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai 200240
全文: PDF(4875 KB)   HTML
摘要: 利用等转变量方法和恒速升温时效过程中的电阻实验研究了NZ30K镁合金的析出动力学, 获得了动力学模型的激活能 和修正指前因子 , 可用于准确描述不同时效条件下强化相的析出过程. NZ30K镁合金欠时效阶段和峰时效的力学性能显示, 在180~250 ℃范围内峰时效屈服强度一致, 约为150 MPa. 通过最小二乘法确定了NZ30K镁合金180~250 ℃范围内时效时析出强化模型参数C, 约为93 MPa, 实验数据和模型预测数据一致, 证明该模型能应用于NZ30K镁合金欠时效和峰时效条件下屈服强度的预测.
关键词 NZ30K镁合金析出动力学沉淀强化固溶强化屈服强度    
Abstract:Age-hardening effect is considerably strong in magnesium alloys containing Nd, making it possible to develop magnesium alloys with low cost and high strength. Although there have been massive researches about the precipitation product sequence and strengthening models in magnesium, aluminum and other light alloys during their ageing processes, those of NZ30K-Mg alloy, a newly-developed magnesium alloy, has not been carefully investigated. The present work mainly focuses on the model of precipitation kinetics and strengthening of NZ30K-Mg alloy. The precipitation kinetics has been investigated using electrical resistivity testing during continuous heating with different heating rates and formulated based on the isoconversional method. Two related model parameters, modified pre-exponential factor and activation energy were respectively determined. The precipitation behavior of NZ30K-Mg alloy during ageing processes can also be intrinsically explained from the variations of and with the precipitation fraction. This kinetics model with two above-mentioned parameters can accurately describe the precipitation of strengthening phase during different ageing processes. The yield strength of under-aged and peak-aged NZ30K-Mg alloy have been tested and the results show that the testing samples isothermally aged at different temperature from 180 to 250 ℃ have almost the same peak yield strength of about 150 MPa, indicating that the strengthening effect of under-aged and peak-aged NZ30K-Mg alloy is only determined by the precipitation fraction within a certain range of temperatures. The precipitation strengthening model of NZ30K-Mg alloy has been carefully derived, and the parameter C in the model has then been determined by least squares method based on the tested yield strength data. The value of C is about 93 MPa. The prediction of yield strength of under-aged and peak-aged NZ30K-Mg alloy has been performed and fit well with the tested ones, demonstrating the effectiveness of precipitation strengthening model and its engineering application prospects.
Key wordsNZ30K-Mg alloy    precipitation kinetics    precipitation strengthening    solid solution strengthening    yield strength
收稿日期: 2013-08-05     
ZTFLH:  TG166.3  
基金资助:*国家科技重大专项资助项目 2011ZX04014-052和2012ZX04012011
Corresponding author: GU Jianfeng, professor, Tel: (021)34203743, E-mail: gujf@sjtu.edu.cn   
作者简介: 作者简介: 王小娜, 女, 1990年生, 硕士

引用本文:

王小娜, 韩利战, 顾剑锋. NZ30K镁合金时效析出动力学与强化模型的研究*[J]. 金属学报, 2014, 50(3): 355-360.
. PRECIPITATION KINETICS AND YIELD STRENGTH MODEL FOR NZ30K-Mg ALLOY. Acta Metall Sin, 2014, 50(3): 355-360.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00478      或      https://www.ams.org.cn/CN/Y2014/V50/I3/355

[1] Li J H, Jie W Q, Yang G Y. Trans Nonferrous Met Soc China, 2008; 18: S27
[2] Li J H, Sha G, Jie W Q, Ringer S P. Mater Sci Eng, 2012; A538: 272
[3] Antion C, Donnadieu P, Perrard F, Deschamps A, Tassin C, Pisch A. Acta Mater, 2003; 51: 5335
[4] Hantzsche K, Bohlen J, Wendt J, Kainer K U, Yi S B, Letzig D. Scr Mater, 2010; 63: 725
[5] Mishra R K, Gupta A K, Rao P R, Sachdev A K, Kumar A M, Luo A A. Scr Mater, 2008; 59: 562
[6] Nuttall P A, Pike T J, Noble B. Metallography, 1980; 13: 3
[7] Fu P H, Peng L M, Jiang H Y, Chang J W, Zhai C Q. Mater Sci Eng, 2008; A486: 183
[8] Gill L R, Lorimer G W, Lyon P. Adv Eng Mater, 2007; 9: 784
[9] Ma L, Mishra R K, Balogh M P, Peng L M, Luo A A, Sachdev A K, Ding W J. Mater Sci Eng, 2012; A543: 12
[10] Nie J F, Muddle B C. Acta Mater, 2000; 48: 1691
[11] Nie J F, Ohishi K, Gao X, Hono K. Acta Mater, 2008; 56: 6061
[12] Pike T J, Noble B. J Less-common Met, 1973; 30: 63
[13] Esmaeili S, Lloyd D J. Acta Mater, 2005; 53: 5257
[14] Esmaeili S, Lloyd D J, Poole W J. Acta Mater, 2003; 51: 2243
[15] Esmaeili S, Lloyd D J, Poole W J. Acta Mater, 2003; 51: 3467
[16] Liu G, Ding X D, Sun J, Chen K H. Chin J Nonferrous Met, 2001; 11: 337
(刘 刚, 丁向东, 孙 军, 陈康华. 中国有色金属学报, 2001; 11: 337)
[17] Liu G, Zhang G J, Ding X D, Sun J, Chen K H. Rare Met Mater Eng, 2003; 32: 971
(刘 刚, 张国君, 丁向东, 孙 军, 陈康华. 稀有金属材料与工程, 2003; 32: 971)
[18] Deschamps A, Brechet Y. Acta Mater, 1999; 47: 293
[19] Deschamps A, Livet F, Bréchet Y. Acta Mater, 1998; 47: 281
[20] Esmaeili S, Vaumousse D, Zandbergen M W, Poole W J, Cerezo A, Lloyd D J. Philos Mag, 2007; 87: 3797
[21] Vyazovkin S, Burnham A K, Criado J M, Pérez-Maqueda L A, Popescu C, Sbirrazzuoli N. Thermochim Acta, 2011; 520: 1
[22] Burnham A, Dinh L. J Therm Anal Calorim, 2007; 89: 479
[23] Friedman H L. J Polym Sci, 1964; 6C: 183
[24] Ardell A J. Metall Trans, 1985; 16A: 2131
[25] Hutchinson C R, Nie J F, Gorsse S. Metall Mater Trans, 2005; 36A: 2093
[1] 张银辉, 冯强. W对新型Nb稳定化奥氏体耐热铸钢1000 ℃蠕变行为的影响[J]. 金属学报, 2017, 53(9): 1025-1037.
[2] 谢锐,吕铮,卢晨阳,李正元,丁学勇,刘春明. 9Cr-ODS钢中纳米析出相的SAXS和TEM研究*[J]. 金属学报, 2016, 52(9): 1053-1062.
[3] 陈瑞,许庆彦,柳百成. Al-Mg-Si合金中针棒状析出相时效析出动力学及强化模拟研究*[J]. 金属学报, 2016, 52(8): 987-999.
[4] 张可,雍岐龙,孙新军,李昭东,赵培林. 卷取温度对Ti-V-Mo复合微合金化超高强度钢组织及力学性能的影响*[J]. 金属学报, 2016, 52(5): 529-537.
[5] 李勇,郭明星,姜宁,张许凯,张艳,庄林忠,张济山. 汽车用新型Al-0.93Mg-0.78Si-0.20Cu-3.00Zn合金的制备及其时效析出行为研究*[J]. 金属学报, 2016, 52(2): 191-201.
[6] 顾伟,李静媛,王一德. 晶粒尺寸及Taylor因子对过时效态7050铝合金挤压型材横向力学性能的影响*[J]. 金属学报, 2016, 52(1): 51-59.
[7] 李维娟, 张恒毅, 付豪, 张建平, 戚翔宇. 低碳钢烘烤硬化机制的内耗研究[J]. 金属学报, 2015, 51(4): 385-392.
[8] 秦飞, 项敏, 武伟. 纳米压痕法确定TSV-Cu的应力-应变关系*[J]. 金属学报, 2014, 50(6): 722-726.
[9] 张龙飞,燕平,赵京晨,韩凤奎,曾强. DD407单晶高温合金760℃屈服强度的LCP模型分析[J]. 金属学报, 2013, 29(4): 489-494.
[10] 陈俊, 唐帅,刘振宇,王国栋. 冷却方式对Nb-Ti微合金钢组织和性能及沉淀行为的影响[J]. 金属学报, 2012, 48(4): 441-449.
[11] 杜刚 杨文 闫德胜 戎利建. 铸态Al-Mg-Sc-Zr合金退火过程中的硬化行为[J]. 金属学报, 2011, 47(3): 311-316.
[12] NIE Defu ZHAO Jie. 相续室温蠕变中屈服强度附近的应力应变行为[J]. 金属学报, 2009, 45(7): 840-843.
[13] 冷崇燕 周荣 张旭 卢德宏 刘洪喜. Ag和Ta离子双注入改善Ti6Al4V合金耐磨性能[J]. 金属学报, 2009, 45(6): 764-768.
[14] 崔 航 陈怀宁 陈 静 黄春玲 吴昌忠. 球形压痕法评价材料屈服强度和应变硬化指数的有限元分析[J]. 金属学报, 2009, 45(2): 189-194.
[15] 张继旺 鲁连涛 张卫华. 微粒子喷丸中碳钢疲劳性能分析[J]. 金属学报, 2009, 45(11): 1378-1383.