Please wait a minute...
金属学报  2014, Vol. 50 Issue (5): 587-593    DOI: 10.3724/SP.J.1037.2013.00419
  本期目录 | 过刊浏览 |
Al-Mg-Si合金搅拌摩擦焊接头DSC测试过程中组织变化及能量释放分析*
戴启雷1, 梁志芳2, 吴建军1, 孟立春3, 史清宇1()
1 清华大学机械工程系先进成形制造教育部重点实验室, 北京100084
2 清华大学基础工业训练中心, 北京 100084
3 南车青岛四方机车车辆股份有限公司, 青岛 266000
MICROSTRUCTURE CHANGE AND ENERGY RELEASE OF FRICTION STIR WELDED Al-Mg-Si ALLOY DURING DSC TEST
DAI Qilei1, LIANG Zhifang2, WU Jianjun1, MENG Lichun3, SHI Qingyu1()
1 Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084
2 Fundamental Industrial Training Center, Tsinghua University, Beijing 100084
3 CSR Sifang Locomotive and Rolling Stock Co. Ltd., Qingdao 266000
引用本文:

戴启雷, 梁志芳, 吴建军, 孟立春, 史清宇. Al-Mg-Si合金搅拌摩擦焊接头DSC测试过程中组织变化及能量释放分析*[J]. 金属学报, 2014, 50(5): 587-593.
Qilei DAI, Zhifang LIANG, Jianjun WU, Lichun MENG, Qingyu SHI. MICROSTRUCTURE CHANGE AND ENERGY RELEASE OF FRICTION STIR WELDED Al-Mg-Si ALLOY DURING DSC TEST[J]. Acta Metall Sin, 2014, 50(5): 587-593.

全文: PDF(8171 KB)   HTML
摘要: 

对Al-Mg-Si合金搅拌摩擦焊焊核区组织进行了差热扫描量热分析 (DSC), 同时运用EBSD和TEM观察了焊核区的微观组织, 并对存储能进行了定量分析. 研究表明, 焊核区为不稳定组织, 焊核区组织中小角度晶界占42%, 大角度晶界占58%, 同时晶粒内部分布有较高密度的位错结构. 焊核区含有较高的存储能 (8.565 J/g), 通过EBSD对焊核区较高存储能进行了定量分析, 结果表明, 位错存储在晶界和亚晶界的能量为0.0247 J/g, 存储在晶粒内部的能量为0.0712 J/g. 通过DSC定量分析的能量释放来自于焊核区晶粒内部位错的消失和析出相的析出, 其中由析出相析出所造成的能量释放占主导作用, 位错存储在晶界和亚晶界的存储能通过DSC加热并未释放.

关键词 搅拌摩擦焊 (FSW)电子背散射技术 (EBSD)储存能Al-Mg-Si合金差热扫描量热法 (DSC)    
Abstract

During friction stir welding, the nugget zone (NZ) underwent severe plastic deformation and high temperature. This process resulted in high density of dislocations and dissolving of the precipitation. In this study, the stored energy of the NZ in friction stir welded Al-Mg-Si joint was quantitatively analyzed by means of differential scanning calorimetry (DSC). The microstructure of the NZ was investigated by electron back scattering diffraction (EBSD) and transmission electron microscope (TEM). DSC analysis showed that the energy stored in the NZ was about 8.565 J/g. Microstructure investigation showed that the NZ was composed of low-angle grain boundary (42%) and high-angle grain boundary (58%). Meanwhile, there were high density dislocations in the NZ. The stored energy was quantitatively analyzed based on EBSD data and dislocation density. The results showed that the stored energy resulting from the grain boundary and dislocations was about 0.0247 J/g and 0.0712 J/g, respectively. These results proved that the precipitation played dominant role in stored energy while the contribution of grain boundary and dislocations are negligible.

Key wordsfriction stir welding (FSW)    electron back scattering diffraction (EBSD)    stored energy    Al-Mg-Si alloy    differential scanning calorimetry (DSC)
收稿日期: 2013-07-17     
ZTFLH:  TG113  
基金资助:* 国家自然科学基金资助项目 51375259
作者简介: null

戴启雷, 男, 1984年生, 博士生

图1  
图2  
图 3  
图4  
图5  
图6  
图7  
图8  
图9  
图10  
[1] Su J Q, Nelson T W, Mishra R, Mahoney M. Acta Mater, 2003; 51: 713
[2] Su J Q, Nelson T W, Sterling C J. Mater Sci Eng, 2005; A405: 277
[3] Cao W Q, Gu C, Pereloma F E V, Davies C H J. Mater Sci Eng, 2008; A492: 74
[4] Hazra Sujoy S, Gazder Azdiar A, Pereloma Elena V. Mater Sci Eng, 2009; A524: 158
[5] Zhang Y, Wang J T, Cheng C, Liu J Q. J Mater Sci, 2008; 43: 7362
[6] Kim W J, Wang J Y. Mater Sci Eng, 2007; A464: 23
[7] Morris D G, Munoz-Morris M A. Acta Mater, 2002; 50: 4047
[8] Dai Q L, Liang Z F, Chen G Q, Meng L C, Shi Q Y. Mater Sci Eng, 2013; A580: 184
[9] Dalla Torre F H, Gazder A A, Pereloma E V, Davies C H J. J Mater Sci, 2007; 42: 1622
[10] Wu X L, Li B, Ma E. Appl Phys Lett, 2007; 91: 141908
[11] Read W T, Shockley W. Phys Rev, 1950; 78: 275
[12] Humphreys F J,Hatherly M. Recrystallization and Related Annealing Phenomena. 2nd Ed., Oxford: Pergamon Press, 2004: 16
[13] Godfrey A, Cao W Q, Hansen N, Liu Q. Metall Mater Trans, 2005; 36A: 2371
[14] Beaver M B, Holt D L, Titchener A L. Prog Mater Sci, 1973; 17: 5
[15] Woo W, Balogh L, Ungár T, Choo H, Feng Z L. Mater Sci Eng, 2008; A498: 308
[16] Woo W, Ungár T, Feng Z L, Kenik E, Clausen B. Metall Mater Trans, 2010; 41A: 1210
[17] Dutta I, Allen S M. Mater Sci Lett, 1991; 10: 323
[18] Yang W C, Wang M P, Sheng X F, Zhang Q, Wang Z A. Acta Metall Sin, 2010; 46: 1481
[18] (杨文超, 汪明朴, 盛晓菲, 张 茜, 王正安. 金属学报, 2010; 46: 1481)
[19] Edwards G A, Stiller K, Dunlop G L, Couper M J. Acta Mater, 1998; 46: 3893
[20] Gao N, Starink J M, Langdon T G. Mater Sci Technol, 2009; 25: 687
[1] 祝佳林,刘施峰,曹宇,柳亚辉,邓超,刘庆. 交叉轧制周期对高纯Ta板变形及再结晶梯度的影响[J]. 金属学报, 2019, 55(8): 1019-1033.
[2] 向雪梅, 赖玉香, 刘春辉, 陈江华. 微合金化元素Sn对Al-Mg-Si合金高温时效强化相析出路径的改变[J]. 金属学报, 2018, 54(9): 1273-1280.
[3] 陈瑞,许庆彦,柳百成. Al-Mg-Si合金中针棒状析出相时效析出动力学及强化模拟研究*[J]. 金属学报, 2016, 52(8): 987-999.
[4] 曹零勇,郭明星,崔华,蔡元华,张巧霞,胡晓倩,张济山. Al-Mg-Si系合金均匀化过程中β→α相转变动力学研究[J]. 金属学报, 2013, 29(4): 428-434.
[5] 黄洪涛 Godfrey Andrew 刘伟 唐瑞鹤 刘庆. 样品取向对AZ31镁合金静态再结晶行为的影响[J]. 金属学报, 2012, 48(8): 915-921.
[6] 兰勇军; 黄成江; 李殿中 . 热变形条件下C-Mn钢奥氏体——铁素体相变模拟[J]. 金属学报, 2003, 39(3): 242-248 .
[7] 蒋大鸣;洪班德;雷廷权. 合金成分及弥散相对Al-Mg-Si合金疲劳断口形貌的影响[J]. 金属学报, 1990, 26(5): 76-78.