Please wait a minute...
金属学报  2014, Vol. 50 Issue (5): 575-586    DOI: 10.3724/SP.J.1037.2013.00501
  本期目录 | 过刊浏览 |
Ti-V-Cr系阻燃钛合金的抗点燃性能及其理论分析*
弭光宝(), 黄旭, 曹京霞, 曹春晓
北京航空材料研究院先进钛合金航空科技重点实验室, 北京 100095
IGNITION RESISTANCE PERFORMANCE AND ITS THEORETICAL ANALYSIS OF Ti-V-Cr TYPE FIREPROOF TITANIUM ALLOYS
MI Guangbao(), HUANG Xu, CAO Jingxia, CAO Chunxiao
Aviation Key Laboratory of Science and Technology on Advanced Titanium Alloys, Beijing Institute of Aeronautical Materials, Beijing 100095
引用本文:

弭光宝, 黄旭, 曹京霞, 曹春晓. Ti-V-Cr系阻燃钛合金的抗点燃性能及其理论分析*[J]. 金属学报, 2014, 50(5): 575-586.
Guangbao MI, Xu HUANG, Jingxia CAO, Chunxiao CAO. IGNITION RESISTANCE PERFORMANCE AND ITS THEORETICAL ANALYSIS OF Ti-V-Cr TYPE FIREPROOF TITANIUM ALLOYS[J]. Acta Metall Sin, 2014, 50(5): 575-586.

全文: PDF(14254 KB)   HTML
摘要: 

建立定量描述阻燃钛合金抗点燃性能的摩擦接触压力P与预混气流氧浓度c0关系, 对比研究Ti-V-Cr系阻燃钛合金及常规钛合金的抗点燃性能, 并基于摩擦生热原理和着火热爆燃理论对阻燃钛合金的抗点燃机理进行模型计算分析. 结果表明, 当c0≥70%时, Ti40钛合金在室温下即会点燃. Ti40钛合金的抗点燃性能比Alloy C+钛合金低2.5%, 比TC4钛合金高40%. 阻燃钛合金的着火源为摩擦过程产生的微凸体, 氧的化学吸附是氧与微凸体相互作用的控制步骤, 阻燃钛合金的摩擦点燃临界温度T *随等效压力Peq的增大而减小. 对于Ti40钛合金, 当Peq在0.1~0.5 MPa变化时, T*的变化范围为1073~1323 K; 摩擦表面由TiO2, V2O5和Cr2O3等氧化物融合物构成, 厚度为2~5ηm. 摩擦过程中该层融合物改善了接触表面的润滑条件, 使摩擦区的温度大幅度降低, 从而提高了阻燃钛合金的抗点燃性能.

关键词 航空发动机阻燃钛合金阻燃性能抗点燃性能氧化物融合物钛火    
Abstract

As a type of structure functional high temperature alloy, the ignition resistance performance of fireproof titanium alloy is an important basis for the safety in the application. In this work, the relationship between the friction contact pressure P and oxygen concentration c0 of mixed airflow was established to describe the ignition resistance of fireproof titanium alloys. The ignition resistance of the traditional titanium alloys and typical Ti-V-Cr type titanium alloys was investigated and compared. Based on the principle of friction-induced heat and the thermal explosion theory of ignition, the mechanism of the ignition resistance of fireproof titanium alloys was modeled, calculated and analyzed. The results showed that Ti40 was ignited immediately at room temperature as c0≥70%. The ignition resistance of Ti40 was 2.5% lower than that of Alloy C+ and 40% higher than that of TC4. The ignition originated from the micro-tip formed during friction and the chemical adsorption of oxygen on the micro-tip was the key step for the interaction. With increasing of equivalent pressure Peq, the critical temperature T * ignited by friction decreasd. When Peq varied from 0.1 to 0.5 MPa, T * of Ti40 ranged from 1073 to 1323 K. The surface under friction was 2~5 μm and composed of the fusion of the oxides including TiO2, V2O5 and Cr2O3. The lubrication condition between the contacting surfaces was improved by the fused layer and resulted in great temperature decrease in the friction area. Consequently, the ignition resistance of fireproof titanium alloys was improved.

Key wordsaero-engine    fireproof titanium alloy    fireproof performance    ignition resistance performance    fused oxide    titanium fire
收稿日期: 2013-08-20     
ZTFLH:  TG146.2  
基金资助:* 航空科学基金资助项目20123021004
作者简介: null

弭光宝, 男, 1981年生, 博士

[1] Tuominen S, Wojcik C. Adv Mater Process, 1995; (4): 23
[2] Berczik D M. UK Patent, GB-2238057 A, 1991
[3] Борисова Е А, Скляров Н М. Горение и Пожаробезопасность Титановых Сплавов. Москва: ВИАМ, 2002: 15
[4] Zhao Y Q, Zhu K Y, Qu H L, Wu H, Zhou L, Zhou Y G, Zeng W D, Yu H Q. Mater Sci Eng, 2000; A282: 153
[5] Sun F S, Lavernia E J. Mater Eng Perform, 2005; 14: 784
[6] Huang X,Zhu Z S,Wang H H. Advanced Aeronautical Titanium Alloys and Applications. Beijing: National Defense Industry Press, 2012: 276
[6] (黄 旭,朱知寿,王红红. 先进航空钛合金材料与应用. 北京: 国防工业出版社, 2012: 276)
[7] Брейтер А Л, Мальцев В М, Попов Е И. Физика горения и взрыва, 1977; 13: 558
[8] Ягодников Д А. Воспламенение и Горение Порошкообраозных Металлов. Москва: Издательство МГТУ, 2009: 168
[9] Merzhanov A G. AIAA J, 1975; 13: 209
[10] Rozenband V I, Vaganova N I. Combust Flame, 1992; 88: 113
[11] Andrzejak T A, Shafirovich E, Varma A. Propellants Explosives Pyrotechnics, 2009; 34: 53
[12] Beloni E, Dreizin E L. Combust Sci Technol, 2011; 183: 823
[13] Mi G B, Huang X, Cao J X, Cao C X. China Pat, 201218001209.1, 2012
[13] (弭光宝, 黄 旭, 曹京霞, 曹春晓. 中国专利, 201218001209.1, 2012)
[14] Mi G B, Huang X, Cao J X, Wang B, Cao C X. China Pat, 201218003649.0, 2012
[14] (弭光宝, 黄 旭, 曹京霞, 王 宝, 曹春晓. 中国专利, 201218003649.0, 2012)
[15] Mi G B, Huang X S, Li P J, Huang X, Cao J X, Cao C X. Trans Nonferrous Met Soc China, 2012; 22: 2409
[16] Mi G B, Huang X, Cao J X, Cao C X, Huang X S. Trans Nonferrous Met Soc China, 2013; 23: 2270
[17] Bhushan B. Introduction to Tribology. 2nd Ed., New York: Wiley, 2013: 79
[18] Gunaji M V, Sircar S, Beeson H D. Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres. Denver: ASTM Spec Tech Publ, 1995: 81
[19] Glassman I, Mellor A M, Sullivan H F, Laurendeau N M. Conference No.52 of Nato Advanced Group for Aerospace Research and Development. Paris: Proceedings, 1970: 19
[20] Gulino R, Bair S, Winer W O, Bhushan B. ASME J Trib, 1986; 108: 29
[21] Bhushan B. ASME J Trib, 1987; 109: 252
[22] Huang X. PhD Dissertation, Northwestern Polytechnic University, Xi'an, 1998
[22] (黄 旭. 西北工业大学博士学位论文, 西安, 1998)
[23] Каракозов Э С. Диффузионная сварка титана. Москва: Металлургия, 1977: 53
[24] Болобов В И, Подлевских Н А. Физика горения и взрыва, 2007; 43: 39
[25] Болобов В И, Шнеерсон Я М, Лапин АЮ. Цветные металлы, 2011; 12: 98
[26] Франк-Каменеций Д А. Диффузия теплопередача в химической кинетике. Москва: Наука, 1967: 189
[27] Zhang Y H,Huang Z A. Combustion and Explosion. Beijing: Metallurgical Industry Press, 2011: 79
[27] (张英华,黄志安. 燃烧与爆炸学. 北京: 冶金工业出版社, 2011: 79)
[28] Попель П С, Баум Б А. Металлы, 1986; 5: 47
[29] Mi G B, Cao J X, Huang X, Cao C X, Li P J. Sci China Phys Mech Astron, 2012; 55: 1371
[1] 张国庆,张义文,郑亮,彭子超. 航空发动机用粉末高温合金及制备技术研究进展[J]. 金属学报, 2019, 55(9): 1133-1144.
[2] 唐宁, 王艳丽, 许庆彦, 赵希宏, 柳百成. 宽弦航空叶片Bridgeman定向凝固组织数值模拟[J]. 金属学报, 2015, 51(4): 499-512.