Please wait a minute...
金属学报  2013, Vol. 29 Issue (4): 428-434    DOI: 10.3724/SP.J.1037.2012.00608
  论文 本期目录 | 过刊浏览 |
Al-Mg-Si系合金均匀化过程中β→α相转变动力学研究
曹零勇1)郭明星1),崔华2),蔡元华1),张巧霞1),胡晓倩1),张济山1)
1) 北京科技大学新金属材料国家重点实验室, 北京 100083
2) 北京科技大学材料科学与工程学院, 北京 100083
STUDY ON THE KINETICS OF PHASE TRANSFORMATION β→α IN THE HOMOGENEOUS HEAT TREATMENT OF Al-Mg-Si SERIES ALLOYS
CAO Lingyong1), GUO Mingxing1), CUI Hua2), CAI Yuanhua1),ZHANG Qiaoxia 1),HU Xiaoqian 1), ZHANG Jishan1)
1) State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing,100083
2) School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
全文: PDF(1265 KB)  
摘要: 

根据已有的实验结果提出了Al-Mg-Si系合金均匀化过程中片层状β-AlFeSi相向球形α-Al(FeMn)Si相转变过程模型图, 并据此采用稳态扩散理论对其转变动力学过程以及555 ℃不同时间相转变过程等进行了系统深入的研究. 结果表明, 均匀化温度Tβ→α相转变的动力学影响很显著, 温度越高, 转变速率越快; 而α相原始核心的大小只略微影响β相溶穿时间; α相核心间距l主要影响转变过程中β相的边界溶解阶段; β相的厚度对β→α相转变过程的影响最大, 特别是溶穿阶段, 随着厚度的增加,转变过程由β相边界溶解为主导的方式向由β相溶穿为主导的方式发生转变; 当β相厚度分别为0.1,0.2和0.3 μm时, 理论预测发生熔断所需均匀化时间分别大于5, 10和15 h, 这与实际的实验结果非常吻合. 此外,β相厚度小于0.3 μm时, 经16-24 h很容易达到转化率f(α)0.9, 因此, 除了优化均匀化过程进而更好地控制β→α相转变之外, 合金熔铸工艺也应该尽量保证基体内的β相厚度小于0.3 μm.

关键词 Al-Mg-Si合金均匀化热处理相转变动力学模型    
Abstract

According to the present experiment results about the transformation from βAlFeSi to α-Al(FeMn)Si phase in Al-Mg-Si series alloys, the model and kinetics of phase transformation,and microstructure evolution at 555 ℃ were systematically investigated. The results show that, the homogeneous temperature T can give a significant effect on the transformation kinetics, and with increasing T, the transformation rate increases fast. The nucleus radius of α phase only affects the breakthrough time along the thickness direction of β phase. The distance l between twoα phases mainly has an influence on the dissolving of rim for β phase. The thickness of β phase normally has a greatest influence on the phase transformation β→α,especially for the breakthrough stage of β phase, with increasing the thickness of β phase,the main transformation with longer time in the whole phase transformation process can changes from rim dissolving of β phase to breakthrough along the thickness direction of β phase. The breakthrough time of β phases with the thickness of 0.1, 0.2 and 0.3μm is above 5, 10 and 15 h, respectively, which corresponds with the real experiment results. In addition, if the thickness of β phase is smaller than 0.3μm, the transformation rate f(α) easily reaches above 0.9 after homogeneous heat treatment at 555 ℃ for 16--24 h. Therefore, the importance of optimizing casting process to make sure the thickness of β phase below 0.3μm, is the same as the homogeneous heat treatment for the better controlling the phase transformation β→α.

Key wordsAl-Mg-Si alloy    homogenization    phase transformation    kinetics, modeling
收稿日期: 2012-10-15     
基金资助:

北京市自然科学基金项目2112030和新金属材料国家重点实验室自主课题2012Z-07资助

通讯作者: 郭明星     E-mail: mingxingguo@skl.ustb.edu.cn
作者简介: 曹零勇, 男, 1984年生, 博士生

引用本文:

曹零勇,郭明星,崔华,蔡元华,张巧霞,胡晓倩,张济山. Al-Mg-Si系合金均匀化过程中β→α相转变动力学研究[J]. 金属学报, 2013, 29(4): 428-434.
CAO Lingyong, GUO Mingxing, CUI Hua, CAI Yuanhua, ZHANG Qiaoxia, HU Xiaoqian, ZHANG Jishan. STUDY ON THE KINETICS OF PHASE TRANSFORMATION β→α IN THE HOMOGENEOUS HEAT TREATMENT OF Al-Mg-Si SERIES ALLOYS. Acta Metall Sin, 2013, 29(4): 428-434.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2012.00608      或      https://www.ams.org.cn/CN/Y2013/V29/I4/428

[1] Miller W S, Zhuang L, Bottema J, Wittebrood A J, De S P, Haszler A, Vieregge A. Mater Sci Eng, 2000; A280: 37


[2] Davis J R.  Aluminium and Aluminium Alloys (ASM Specialty Handbook).USA: ASM international Publication, 1993: 10

[3] Skjerpe P.  Metall Mater Trans, 1987; 18A: 189

[4] Kamikubo Y, Hamuro T, Takemoto S, Nakahara Y, Kamei S, Nakagaki T, Miyamoto S, Funatsu A,Kato H, Allen C M.  Prog Mater Sci, 1998; 43: 89

[5] Zheng J G, Vincent R, Steeds J W.  Philos Mag, 2000; 80A: 493

[6] Birol Y.  Z Metallkd, 1998; 89: 501

[7] Zajac S, Hutchinson B, Johansson A, Gullman L O, Lagneborg R.  Mater Sci Technol, 1994; 10: 323

[8] Parson N C, Hankin J D, Hicklin K P.  US Pat, 6440359 B1, 2002

[9] Osada Y.  J Mater Sci, 2004; 39: 1227

[10] Reiso O.  Mater Forum, 2004; 28: 32

[11] Kuijpers N C W, Tirel J, Hanlon D N, Zwaag S.  Mater Charact, 2002; 48: 379

[12] Kuijpers N C W, Kool W H, Koenis P T G, Nilsen K E, Todd I, Zwaag S.  Mater Charact, 2002; 49: 409

[13] Onurlu S, Tekin A.  J Mater Sci, 1994; 29: 1652

[14] Tanihata H, Sugawara T, Matsuda K, Ikeno S.  J Mater Sci, 1999; 34: 1205

[15] Kuijpers N C W, Vermolen F J, Vuik C, Koenis P T G, Nilsen K E, Zwaag S.  Mater Sci Eng, 2005; A394: 9

[16] Witthaya E, Hiroyasu T, Tatsuo S.  J Mater Sci Technol, 2008; 24: 21

[17] Liu H, Zhao G, Liu C M, Zuo, L C.  Trans Nonferrous Met Soc China, 2006; 16: 376

[18] Lodgaard L, Ryum N.  Mater Sci Eng, 2000; A283: 144

[19] Sweet L, Zhu S, Gao S, Taylor J, Easton M.  Metall Mater Trans, 2011; 42A: 1737

[20] Kuijpers N C W, Vermolen F J, Vuik K, Zwaag S.  Mater Trans, 2003; 44: 1448

[21] Kuijpers N C W, Tirel J, Hanlon D N, Zwaag S.  J Mater Sci Lett, 2003; 22: 1385

[22] Whelan M J.  Met Sci, 1969; 3: 95

[23] Aaron H B, Kotler G R.  Metall Mater Trans, 1971; 2B: 393

[24] Tundal U L F H, Ryum N.  Metall Mater Trans, 1992; 23A: 433

[25] Crank J.  The Mathematics of Diffusion. 2nd Ed., London: Clarendon Press Oxford, 1979: 89

[26] Mondolfo L F.  Aluminium Alloys: Structure and Properties. London: Butter Worths Press, 1976: 100

[27] Du Y, Chang Y A, Huang B, Gong W, Jin Z, Xu H.  Mater Sci Eng, 2003; A363: 140

 
[1] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[2] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[3] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[4] 李美霖, 李赛毅. 金属Mg二阶锥面<c+a>刃位错运动特性的分子动力学模拟[J]. 金属学报, 2020, 56(5): 795-800.
[5] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[6] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[7] 王涛,万志鹏,李钊,李佩桓,李鑫旭,韦康,张勇. 热处理工艺对GH4720Li合金细晶铸锭组织与热加工性能的影响[J]. 金属学报, 2020, 56(2): 182-192.
[8] 王友德,徐善华,李晗,张海江. 一般大气环境下锈蚀结构钢表面特征与随机模型[J]. 金属学报, 2020, 56(2): 148-160.
[9] 马小强,杨坤杰,徐喻琼,杜晓超,周建军,肖仁政. 金属Nb级联碰撞的分子动力学模拟[J]. 金属学报, 2020, 56(2): 249-256.
[10] 史俊勤,孙琨,方亮,许少锋. 含水条件下单晶Cu的应力松弛及弹性恢复[J]. 金属学报, 2019, 55(8): 1034-1040.
[11] 戴培元,胡兴,逯世杰,王义峰,邓德安. 尺寸因素对2D轴对称模型计算不锈钢管焊接残余应力精度的影响[J]. 金属学报, 2019, 55(8): 1058-1066.
[12] 张清东,李硕,张勃洋,谢璐,李瑞. 金属轧制复合过程微观变形行为的分子动力学建模及研究[J]. 金属学报, 2019, 55(7): 919-927.
[13] 赵宝军,赵宇宏,孙远洋,杨文奎,侯华. Mn含量对Fe-Cu-Mn合金纳米富Cu析出相影响的相场法研究[J]. 金属学报, 2019, 55(5): 593-600.
[14] 刘耀鸿,王朝辉,刘轲,李淑波,杜文博. Er对Mg-5Zn-xEr镁合金热裂敏感性的影响[J]. 金属学报, 2019, 55(3): 389-398.
[15] 王瑾, 余黎明, 李冲, 黄远, 李会军, 刘永长. 不同温度对含与不含位错α-Fe中He原子行为的影响[J]. 金属学报, 2019, 55(2): 274-280.