Please wait a minute...
金属学报  2013, Vol. 29 Issue (4): 428-434    DOI: 10.3724/SP.J.1037.2012.00608
  论文 本期目录 | 过刊浏览 |
Al-Mg-Si系合金均匀化过程中β→α相转变动力学研究
曹零勇1)郭明星1),崔华2),蔡元华1),张巧霞1),胡晓倩1),张济山1)
1) 北京科技大学新金属材料国家重点实验室, 北京 100083
2) 北京科技大学材料科学与工程学院, 北京 100083
STUDY ON THE KINETICS OF PHASE TRANSFORMATION β→α IN THE HOMOGENEOUS HEAT TREATMENT OF Al-Mg-Si SERIES ALLOYS
CAO Lingyong1), GUO Mingxing1), CUI Hua2), CAI Yuanhua1),ZHANG Qiaoxia 1),HU Xiaoqian 1), ZHANG Jishan1)
1) State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing,100083
2) School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
引用本文:

曹零勇,郭明星,崔华,蔡元华,张巧霞,胡晓倩,张济山. Al-Mg-Si系合金均匀化过程中β→α相转变动力学研究[J]. 金属学报, 2013, 29(4): 428-434.
CAO Lingyong, GUO Mingxing, CUI Hua, CAI Yuanhua, ZHANG Qiaoxia, HU Xiaoqian, ZHANG Jishan. STUDY ON THE KINETICS OF PHASE TRANSFORMATION β→α IN THE HOMOGENEOUS HEAT TREATMENT OF Al-Mg-Si SERIES ALLOYS[J]. Acta Metall Sin, 2013, 29(4): 428-434.

全文: PDF(1265 KB)  
摘要: 

根据已有的实验结果提出了Al-Mg-Si系合金均匀化过程中片层状β-AlFeSi相向球形α-Al(FeMn)Si相转变过程模型图, 并据此采用稳态扩散理论对其转变动力学过程以及555 ℃不同时间相转变过程等进行了系统深入的研究. 结果表明, 均匀化温度Tβ→α相转变的动力学影响很显著, 温度越高, 转变速率越快; 而α相原始核心的大小只略微影响β相溶穿时间; α相核心间距l主要影响转变过程中β相的边界溶解阶段; β相的厚度对β→α相转变过程的影响最大, 特别是溶穿阶段, 随着厚度的增加,转变过程由β相边界溶解为主导的方式向由β相溶穿为主导的方式发生转变; 当β相厚度分别为0.1,0.2和0.3 μm时, 理论预测发生熔断所需均匀化时间分别大于5, 10和15 h, 这与实际的实验结果非常吻合. 此外,β相厚度小于0.3 μm时, 经16-24 h很容易达到转化率f(α)0.9, 因此, 除了优化均匀化过程进而更好地控制β→α相转变之外, 合金熔铸工艺也应该尽量保证基体内的β相厚度小于0.3 μm.

关键词 Al-Mg-Si合金均匀化热处理相转变动力学模型    
Abstract

According to the present experiment results about the transformation from βAlFeSi to α-Al(FeMn)Si phase in Al-Mg-Si series alloys, the model and kinetics of phase transformation,and microstructure evolution at 555 ℃ were systematically investigated. The results show that, the homogeneous temperature T can give a significant effect on the transformation kinetics, and with increasing T, the transformation rate increases fast. The nucleus radius of α phase only affects the breakthrough time along the thickness direction of β phase. The distance l between twoα phases mainly has an influence on the dissolving of rim for β phase. The thickness of β phase normally has a greatest influence on the phase transformation β→α,especially for the breakthrough stage of β phase, with increasing the thickness of β phase,the main transformation with longer time in the whole phase transformation process can changes from rim dissolving of β phase to breakthrough along the thickness direction of β phase. The breakthrough time of β phases with the thickness of 0.1, 0.2 and 0.3μm is above 5, 10 and 15 h, respectively, which corresponds with the real experiment results. In addition, if the thickness of β phase is smaller than 0.3μm, the transformation rate f(α) easily reaches above 0.9 after homogeneous heat treatment at 555 ℃ for 16--24 h. Therefore, the importance of optimizing casting process to make sure the thickness of β phase below 0.3μm, is the same as the homogeneous heat treatment for the better controlling the phase transformation β→α.

Key wordsAl-Mg-Si alloy    homogenization    phase transformation    kinetics, modeling
收稿日期: 2012-10-15     
基金资助:

北京市自然科学基金项目2112030和新金属材料国家重点实验室自主课题2012Z-07资助

作者简介: 曹零勇, 男, 1984年生, 博士生

[1] Miller W S, Zhuang L, Bottema J, Wittebrood A J, De S P, Haszler A, Vieregge A. Mater Sci Eng, 2000; A280: 37


[2] Davis J R.  Aluminium and Aluminium Alloys (ASM Specialty Handbook).USA: ASM international Publication, 1993: 10

[3] Skjerpe P.  Metall Mater Trans, 1987; 18A: 189

[4] Kamikubo Y, Hamuro T, Takemoto S, Nakahara Y, Kamei S, Nakagaki T, Miyamoto S, Funatsu A,Kato H, Allen C M.  Prog Mater Sci, 1998; 43: 89

[5] Zheng J G, Vincent R, Steeds J W.  Philos Mag, 2000; 80A: 493

[6] Birol Y.  Z Metallkd, 1998; 89: 501

[7] Zajac S, Hutchinson B, Johansson A, Gullman L O, Lagneborg R.  Mater Sci Technol, 1994; 10: 323

[8] Parson N C, Hankin J D, Hicklin K P.  US Pat, 6440359 B1, 2002

[9] Osada Y.  J Mater Sci, 2004; 39: 1227

[10] Reiso O.  Mater Forum, 2004; 28: 32

[11] Kuijpers N C W, Tirel J, Hanlon D N, Zwaag S.  Mater Charact, 2002; 48: 379

[12] Kuijpers N C W, Kool W H, Koenis P T G, Nilsen K E, Todd I, Zwaag S.  Mater Charact, 2002; 49: 409

[13] Onurlu S, Tekin A.  J Mater Sci, 1994; 29: 1652

[14] Tanihata H, Sugawara T, Matsuda K, Ikeno S.  J Mater Sci, 1999; 34: 1205

[15] Kuijpers N C W, Vermolen F J, Vuik C, Koenis P T G, Nilsen K E, Zwaag S.  Mater Sci Eng, 2005; A394: 9

[16] Witthaya E, Hiroyasu T, Tatsuo S.  J Mater Sci Technol, 2008; 24: 21

[17] Liu H, Zhao G, Liu C M, Zuo, L C.  Trans Nonferrous Met Soc China, 2006; 16: 376

[18] Lodgaard L, Ryum N.  Mater Sci Eng, 2000; A283: 144

[19] Sweet L, Zhu S, Gao S, Taylor J, Easton M.  Metall Mater Trans, 2011; 42A: 1737

[20] Kuijpers N C W, Vermolen F J, Vuik K, Zwaag S.  Mater Trans, 2003; 44: 1448

[21] Kuijpers N C W, Tirel J, Hanlon D N, Zwaag S.  J Mater Sci Lett, 2003; 22: 1385

[22] Whelan M J.  Met Sci, 1969; 3: 95

[23] Aaron H B, Kotler G R.  Metall Mater Trans, 1971; 2B: 393

[24] Tundal U L F H, Ryum N.  Metall Mater Trans, 1992; 23A: 433

[25] Crank J.  The Mathematics of Diffusion. 2nd Ed., London: Clarendon Press Oxford, 1979: 89

[26] Mondolfo L F.  Aluminium Alloys: Structure and Properties. London: Butter Worths Press, 1976: 100

[27] Du Y, Chang Y A, Huang B, Gong W, Jin Z, Xu H.  Mater Sci Eng, 2003; A363: 140

 
[1] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[2] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[3] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[4] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[5] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[6] 张志东. 铁磁性三维Ising模型精确解及时间的自发产生[J]. 金属学报, 2023, 59(4): 489-501.
[7] 王凯, 晋玺, 焦志明, 乔珺威. CrFeNi中熵合金在宽温域拉伸条件下的力学行为与变形本构方程[J]. 金属学报, 2023, 59(2): 277-288.
[8] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[9] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[10] 居天华, 舒念, 何维, 丁学勇. 合金溶液中溶质间活度相互作用系数预测模型[J]. 金属学报, 2023, 59(11): 1533-1540.
[11] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[12] 杜宗罡, 徐涛, 李宁, 李文生, 邢钢, 巨璐, 赵利华, 吴华, 田育成. Ni-Ir/Al2O3 负载型催化剂的制备及其用于水合肼分解制氢性能[J]. 金属学报, 2023, 59(10): 1335-1345.
[13] 王楠, 陈永楠, 赵秦阳, 武刚, 张震, 罗金恒. 应变速率对X80管线钢铁素体/贝氏体应变分配行为的影响[J]. 金属学报, 2023, 59(10): 1299-1310.
[14] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[15] 郭璐, 朱乾科, 陈哲, 张克维, 姜勇. Fe76Ga5Ge5B6P7Cu1 合金的非等温晶化动力学[J]. 金属学报, 2022, 58(6): 799-806.