Please wait a minute...
金属学报  2014, Vol. 50 Issue (1): 41-48    DOI: 10.3724/SP.J.1037.2013.00352
  论文 本期目录 | 过刊浏览 |
低温挤压Mg-4Zn-2Al-2Sn合金的组织与力学性能研究*
赵东清1, 2) 周吉学2) 刘运腾2) 董旭光1) 王 晶1) 杨院生1, 2)
1) 中国科学院金属研究所, 沈阳110016
2) 山东省科学院新材料研究所, 济南250014
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Mg-4Zn-2Al-2Sn ALLOYS EXTRUDED AT LOW TEMPERATURES
ZHAO Dongqing 1, 2), ZHOU Jixue 2), LIU Yunteng 2), DONG Xuguang 1), WANG Jing 1), YANG Yuansheng 1, 2)
1) Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) Institute of New Materials Research, Shandong Academy of Sciences, Jinan 250014
全文: PDF(11253 KB)   HTML
摘要: 研究了Mg-4Zn-2Al-2Sn合金在225, 250和275 ℃挤压变形后的微观组织、织构及其力学性能. 结果表明: 在3种挤压温度下合金均发生了完全动态再结晶, 晶粒尺寸分别为4.4, 7.1和10.5 μm. 挤压温度直接影响到晶粒内部第二相的析出, 在225 ℃挤压时, 在晶粒内部可观察到尺寸为20~60 nm的不规则形貌的Mg2Sn析出相, 挤压温度升高到275 ℃, 第二相析出增多, Mg2Sn颗粒长大到500 nm左右, 并观察到沿挤压方向呈流线分布的微米级Mg32(Al, Zn)49. 在225和250 ℃挤压时, 形成了单一的平行于挤压方向的基面织构, 当温度升高到275 ℃时, 棱柱面滑移临界剪切应力急剧降低, 棱柱面滑移系启动, 形成了除基面织构以外的棱柱面平行于挤压方向的{1010} <0002>织构, 这种取向在沿挤压方向压缩时, 压应力平行于c轴方向, 不利于拉伸孪晶{1012} <1011>的形成, 导致275 ℃挤压样品拉压不对称性不明显, 压缩与拉伸屈服强度之比为0.95.
关键词 镁合金低温挤压组织力学性能    
Abstract:Due to the high demand of light-weight alloys in automotive applications, wrought magnesium (Mg) alloys, applied as automotive sheet and extrusions, are attracting great attention. However, some inherent disadvantages of common wrought Mg alloys have limited their application, such as poor corrosion resistance, poor creep resistance and low formability. It is well known that Sn can provide thermally stable Mg2Sn particles in the matrix of magnesium alloys. Our previous study shows that the Mg-4Zn-2Al-2Sn alloy has potential to be developed into a wrought Mg alloy. Currently, the microstructure, texture and mechanical properties of Mg-4Zn-2Al-2Sn alloy extruded at temperatures of 225, 250 and 275 ℃ have been investigated, where complete dynamic recrystallization occurred during extrusion and the average grain size was reduced to 4.4, 7.1 and 10.5 μm, respectively. The amount and morphology of the second phases were directly influenced by the extrusion temperature. Extruded at 225 ℃, irregular Mg2Sn phase in size of 20~60 nm precipitated in the grains. With the extrusion temperature increasing to 275 ℃, Mg2Sn of about 500 nm and micron-size Mg32(Al, Zn)49 precipitates were observed. The {0002} texture was formed at 225 and 250 ℃ during the extrusion. While the temperature increased to 275 ℃, due to the activation of prismatic slip system, {1010}<0002> texture of prismatic plane parallel to extrusion direction was also observed. When compressive stress loaded along the extrusion direction, the {1010}<0002> texture suppressed the activation of the tensile twinning {1012}<1011>, which leads to a decrease of asymmetry between tension and compression.
Key wordsmagnesium alloy    extrusion at low temperature    microstructure    mechanical property
收稿日期: 2013-06-25     
ZTFLH:  TG146.2  
基金资助:* 国家支撑计划项目2011BAE22B01-1, 国家国际科技合作计划项目2011DFA50903和山东省自然科学基金项目ZR2010EQ021资助
Corresponding author: YANG Yuansheng, professor, Tel: (024)23971728, E-mail:ysyang@imr.ac.cn   
作者简介: 赵东清, 女, 1982年生, 博士生

引用本文:

赵东清, 周吉学, 刘运腾, 董旭光, 王晶, 杨院生. 低温挤压Mg-4Zn-2Al-2Sn合金的组织与力学性能研究*[J]. 金属学报, 2014, 50(1): 41-48.
. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Mg-4Zn-2Al-2Sn ALLOYS EXTRUDED AT LOW TEMPERATURES. Acta Metall Sin, 2014, 50(1): 41-48.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00352      或      https://www.ams.org.cn/CN/Y2014/V50/I1/41

[1] Kashefi N, Mahmudi R. Mater Des, 2012; 39: 200
[2] Song D H, Lee S W, Park Y D, Park Y H, Cho K M, Park I M. Mater Sci Forum, 2007; 539-543: 1790
[3] Chen Z H, Yan H G, Chen J H, Quan Y J, Wang H M, Chen D. Magnesium Alloys. Beijing: Chemical Industry Press, 2004: 202
(陈振华, 严红革, 陈吉华, 全亚杰, 王慧敏, 陈 鼎. 镁合金. 北京: 化学工业出版社, 2004: 202)
[4] Sasaki T T, Yamamoto K, Honma T, Kamado S, Hono K. Scr Mater, 2008; 59: 1111
[5] Liu C M, Zhu X R, Zhou H T. Magnesium Alloy Phase Diagrams. Nanjing: Southeast University Press, 2006: 49
(刘楚明, 朱秀荣, 周海涛. 镁合金相图集. 南京: 东南大学出版社, 2006: 49)
[6] Bronfin B, Aghion E, Buch F V, Schumann S, Katzir M. US Pat,7041179B2, 2006
[7] Dong X G, Fu J W, Yang Y S. Acta Metall Sin, 2013; 49: 621
(董旭光, 付俊伟, 杨院生. 金属学报, 2013; 49: 621)
[8] Lim H K, Kim D H, Lee J Y, Kim W T, Kim D H. J Alloys Compd, 2009; 468: 308
[9] Chen J H, Chen Z H, Yan H G, Zhang F Q, Kun L. J Alloys Compd, 2008; 461: 209
[10] Zhao D Q, Dong X G, Zhang X E, Gao A J, Zhou J X, Yang Y S. Mater Sci Forum, 2013; 747-748: 398
[11] Kang D H, Park S S, Kim N J. Mater Sci Eng, 2005; A413-414: 555
[12] Henes S, Gerold V. Z Metallk, 1962; 53: 743
[13] Rabkin E. Scr Mater, 1998; 39: 1631
[14] Li W B, Easterling K E. Acta Metall Mater, 1990; 38: 1045
[15] Mendis C L, Ohishi K, Kawamura Y, Honma T, Kamado S, Hono K. Acta Mater, 2009; 57: 749
[16] Park S S, You B S, Yoon D J. J Mater Process Technol, 2009; 209: 5940
[17] Shahzad M, Wagner L. Mater Sci Eng, 2009; A506: 141
[18] Yang P, Hu Y S, Cui F E. Chin J Mater Res, 2004; 18: 52
(杨 平, 胡轶嵩, 崔凤娥. 材料研究学报, 2004; 18: 52)
[19] Park S S, Tang W N, You B S. Mater Lett, 2010; 64: 31
[20] Wang Y N, Huang J C. Acta Mater, 2007; 55: 897
[21] Barnett M R. Scr Mater, 2008; 59: 696
[22] Stanford N, Barnett M R. Mater Sci Eng, 2009; A516: 226
[23] Jain J, Poole W J, Sinclair C W, Gharghouri M A. Scr Mater, 2010; 62: 301
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 于家英, 王华, 郑伟森, 何燕霖, 吴玉瑞, 李麟. 热浸镀锌高强汽车板界面组织对其拉伸断裂行为的影响[J]. 金属学报, 2020, 56(6): 863-873.
[3] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[4] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[5] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[6] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[7] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[8] 刘震鹏, 闫志巧, 陈峰, 王顺成, 龙莹, 吴益雄. 金刚石工具用Cu-10Sn-xNi合金的制备和性能表征[J]. 金属学报, 2020, 56(5): 760-768.
[9] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[10] 李根, 兰鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714.
[11] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[12] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[13] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[14] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[15] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.