Please wait a minute...
金属学报    DOI: 10.3724/SP.J.1037.2013.00288
  论文 本期目录 | 过刊浏览 |
基于3D-CAFE法对430铁素体不锈钢凝固热参数的研究
庞瑞朋1,2),王福明1,2),张国庆1,2),李长荣3)
1)北京科技大学钢铁冶金新技术国家重点实验室, 北京 100083
2)北京科技大学冶金与生态工程学院, 北京 100083
3)北京科技大学材料科学与工程学院, 北京 100083
STUDY OF SOLIDIFICATION THERMAL PARAMETERS OF 430 FERRITE STAINLESS STEEL BASED ON 3D-CAFE METHOD
PANG Ruipeng1,2), WANG Fuming 1,2), ZHANG Guoqing1,2), LI Changrong 3)
1) State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083
2) School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083
3) School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
全文: PDF(1490 KB)  
摘要: 

根据430铁素体不锈钢的主要成分和缓冷实验条件下得到的宏观凝固组织,确定3D-CAFE模拟计算需要的枝晶尖端生长动力学系数和Gauss分布参数;采用不同的传热系数进行反复计算,通过计算得到的凝固组织与实验得到凝固组织基本相同来确定缓冷条件下模拟计算需要的传热系数.采用3D-CAFE法对缓冷、空冷和水冷条件下430铁素体不锈钢铸件凝固过程的温度场和流场进行分析,发现缓冷条件下铸件凝固过程中的温度场最均匀且固液两相区最宽, 空冷次之,水冷条件下铸件的温度场很不均匀且固液两相区最窄; 缓冷、空冷和水冷条件下,铸件的凝固速率在铸件中心位置达到最大值, 分别为2.3, 3.0和3.3 mm/s.缓冷条件下在铸件中心位置处流动速率达到最大值8.9 mm/s,空冷条件下靠近侧壁处流动速率达到最大值9.8 mm/s,水冷条件下在离侧壁3/5处流动速率达到最大值4.6 mm/s.缓冷条件下铸件的凝固组织几乎全是等轴晶, 空冷条件下只有心部有少量等轴晶,水冷条件下铸件的凝固组织由粗大的柱状晶构成.

关键词 凝固速率温度场流动速率3D-CAFÉ    
Abstract

The dendrite tip growth kinetic coefficients and Gauss distribution parameters for 3D-CAFE simulation are determined according to the main compositions of 430 ferrite stainless steel and the macrostructure forming under the experimental condition of slow cooling. Based on the repeated computation with different heat transfer coefficients, the heat transfer coefficient under slow condition is determined when the solidification structure by above simulation computation is basically the same as the experimental one under slow cooling. The temperature fields and flow fields of 430 ferrite stainless steel during the solidification process under the conditions of slow cooling, air cooling and water cooling were analyzed by use of 3D-CAFE method, respectively. The results show that the temperature field of solidification process under slow cooling condition is the most uniform and the solid-liquid region is the widest, followed by air cooling condition, while the temperature field under water cooling is quite non-uniform and the solid-liquid region is the narrowest. The maximum solidification rates are 2.3 mm/s with slow cooling, 3.0 mm/s with air cooling and 3.3 mm/s with water cooling, respectively, which are obtained in the center of the castings. The maximum flow rate is obtained in the center of casting with the value of 8.9 mm/s under slow cooling condition, and the maximum flow rate is 9.8 mm/s near the side wall under air cooling condition, while the maximum flow rate is 4.6 mm/s at the position with the 3/5 distance from the side wall under water cooling condition. The solidification structure of casting is composed of almost all equiaxed grains under slow cooling condition, and only a few equiaxed grains exist in the centre of casting under air cooling condition, while the solidification structure of casting consists of coarse columnar grains under water cooling condition.

Key wordssolidification rate    temperature field    flow rate    3D-CAFÉ
收稿日期: 2013-05-28     
基金资助:

中央高校基本科研业务费专项资金项目FRF-SD-12-010A和国家高技术研究发展计划项目(2013AA031601)资助

通讯作者: 王福明     E-mail: wangfuming@metall.ustb.edu.cn
作者简介: 庞瑞朋, 男, 1982年生, 博士生

引用本文:

庞瑞朋,王福明,张国庆,李长荣. 基于3D-CAFE法对430铁素体不锈钢凝固热参数的研究[J]. 金属学报, 10.3724/SP.J.1037.2013.00288.
PANG Ruipeng, WANG Fuming, ZHANG Guoqing, LI Changrong. STUDY OF SOLIDIFICATION THERMAL PARAMETERS OF 430 FERRITE STAINLESS STEEL BASED ON 3D-CAFE METHOD. Acta Metall Sin, 2013, 49(10): 1234-1242.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00288      或      https://www.ams.org.cn/CN/Y2013/V49/I10/1234

[1] Hamada J, Matsumoto Y, Fudanoki F. ISIJ Int, 2003; 43: 1989

[2] Chang L Z, Shi X F, Yang H S, Li Z B. J Iron Steel Res Int, 2009; 16: 7
[3] Tsuji N, Tsuzaki K, Maki T. ISIJ Int, 1994; 34: 1008
[4] Yoshihiro Y, Yoshihiro O, Yasushi K, Osamu F. J Rev, 2003; 24: 483
[5] Hyung J S, Joong K A, Soo H P, Dong N L. Acta Mater, 2003; 51: 4693
[6] Huh M Y, Engler O. Mater Sci Eng, 2001; A308: 74
[7] Shin Y H, Hong C P. ISIJ Int, 2002; 42: 359
[8] Chang S R, Kim J M, Hong C P. ISIJ Int, 2001; 41: 738
[9] Gandin C A, Rappaz M. Acta Mater, 1997; 45: 2187
[10] Rappaz M, Gandin C A. Acta Mater Sin, 1993; 41: 345
[11] Couturier G, Rappaz M. Model Simul Mater Sci Eng, 2006; 14: 253
[12] David R J, Haruyuki I, Shinji M, Yuji O, Takamitsu Y. Acta Mater, 2006; 54: 1077
[13] Zhu M F, Hong C P. ISIJ Int, 2001; 41: 436
[14] Kang X H, Du Q, Li D Z, Li Y Y. Acta Metall Sin, 2004; 5: 452
(康秀红, 杜强, 李殿中, 李依依. 金属学报, 2004; 5: 452)
[15] Ignaszak Z, Hajkowski M, Hajkowski J. Mater Sci, 2006; 12: 124
[16] Gildas G, Charles-Andre G, Herve C. ISIJ Int, 2006; 46: 880
[17] Zhu M F, Kim J M, Hong C P. ISIJ Int, 2001; 41: 992
[18] Kattner U R. JOM, 1997; 49: 14
[19] Saunders N, Miodownik A P. Calculation of Phase Diagrams: A Comprehensive Guide.London: Oxford University Press, 1998: 33
[20] Hwangh J D, Lin J, Hwang W S. ISIJ Int, 1995; 35: 170
[21] Wang J L, Wang F M, Li C R, Zhang J M. ISIJ Int, 2010; 50: 222
[22] Zuo Y B, Cui J Z, Zhao Z H, Zhu Q F, Qu F, Wang X J. Chin J Rare Met, 2010; 32: 325
(左玉波, 崔建忠, 赵志浩, 朱庆丰, 屈福, 王向杰. 稀有金属, 2008; 32: 325)
[23] McFadden S, Browne D J, Gandin C A. Metall Mater Trans, 2009; 40A: 662
[24] Poole W J, Weinberg F. Metall Mater Trans, 1998; 29A: 885
[25] Ma Y P. Metal Solidification Theory and Technique. Beijing: Metallurgical Industry Press, 2008: 76

(马幼平. 金属凝固理论与技术. 北京: 冶金工业出版社, 2008: 76)

[1] 刘新华, 付华栋, 何兴群, 付新彤, 江燕青, 谢建新. Cu-Al复合材料连铸直接成形数值模拟研究[J]. 金属学报, 2018, 54(3): 470-484.
[2] 种晓宇, 汪广驰, 杜军, 蒋业华, 冯晶. ZTAp/HCCI复合材料凝固过程中的温度场和热应力的数值模拟[J]. 金属学报, 2018, 54(2): 314-324.
[3] 陈亚东, 郑运荣, 冯强. 基于微观组织演变的DZ125定向凝固高压涡轮叶片服役温度场的评估方法研究*[J]. 金属学报, 2016, 52(12): 1545-1556.
[4] 薛鹏, 张星星, 吴利辉, 马宗义. 搅拌摩擦焊接与加工研究进展*[J]. 金属学报, 2016, 52(10): 1222-1238.
[5] 杨倩倩, 刘源, 李言祥. 定向凝固藕状多孔Al生长过程的模拟仿真[J]. 金属学报, 2014, 50(11): 1403-1412.
[6] 赵博,武传松,贾传宝,袁新. 水下湿法FCAW焊缝成形的数值分析[J]. 金属学报, 2013, 49(7): 797-803.
[7] 徐庆东,林鑫,宋梦华,杨海欧,黄卫东. 激光成形修复2Cr13不锈钢热影响区的组织研究[J]. 金属学报, 2013, 49(5): 605-613.
[8] 魏洁 董俊华 柯伟. 热轧螺纹钢化学剂冷却过程温度场的数值模拟及实验研究[J]. 金属学报, 2012, 48(1): 115-121.
[9] 冯明杰 王恩刚 赫冀成. 高速钢复合轧辊连铸复合过程温度场的数值模拟 I. 石墨铸型法[J]. 金属学报, 2011, 47(12): 1495-1502.
[10] 冯明杰 王恩刚 赫冀成. 高速钢复合轧辊连铸复合过程温度场的数值模拟 II. 铜结晶器法[J]. 金属学报, 2011, 47(12): 1503-1512.
[11] 杨莉莉 郑立静 肖志霞 闫洁 张虎. 抽拉速率对定向凝固Ti-47Al-2Cr-2Nb-0.8B合金组织的影响[J]. 金属学报, 2010, 46(7): 879-884.
[12] 王勇 郭喜平. 凝固速率对Nb-Ti-Si基合金整体定向凝固组织及固/液界面形态的影响[J]. 金属学报, 2010, 46(4): 506-512.
[13] 郭志鹏 熊守美 Mei Li John Allison. 压铸过程中铸件-铸型界面换热系数与铸件凝固速率的关系[J]. 金属学报, 2009, 45(1): 102-106.
[14] 陶汪; 陈彦宾; 李俐群; 吴林 . 焊接熔池表面凝固速率测量的新方法[J]. 金属学报, 2008, 44(9): 1131-1135 .
[15] 于海岐 朱苗勇. 圆坯结晶器电磁搅拌过程三维流场与温度场数值模拟[J]. 金属学报, 2008, 44(12): 1465-1473.