Please wait a minute...
金属学报  2016, Vol. 52 Issue (12): 1545-1556    DOI: 10.11900/0412.1961.2016.00170
  本期目录 | 过刊浏览 |
基于微观组织演变的DZ125定向凝固高压涡轮叶片服役温度场的评估方法研究*
陈亚东1,郑运荣1,冯强1,2()
1 北京科技大学新金属材料国家重点实验室, 北京 100083
2 北京科技大学高端金属材料特种熔炼与制备北京市重点实验室, 北京 100083
EVALUATING SERVICE TEMPERATURE FIELD OF HIGH PRESSURE TURBINE BLADES MADE OF DIRECTIONALLY SOLIDIFIED DZ125 SUPERALLOY BASED ON MICRO-STRUCTURAL EVOLUTION
Yadong CHEN1,Yunrong ZHENG1,Qiang FENG1,2()
1 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
2 Beijing Key Laboratory of Special Melting and Reparation of High-End Metal Materials, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(9498 KB)   HTML
摘要: 

以服役900 h的DZ125合金叶片为研究对象, 通过对叶片服役前后的枝晶干、枝晶间、晶界及碳化物各类组织退化行为的研究, 确定了枝晶干γ’相的体积分数作为反映服役温度的可量化表征参量. 结合叶片用DZ125合金在900~1100 ℃下显微组织的演变行为, 研究了热暴露温度与枝晶干γ’相体积分数之间的量化对应关系. 在此基础上, 提出了一种基于显微组织的涡轮叶片服役温度的实验评估方法. 同时, 分别假设叶片服役温度恒定以及考虑叶片实际服役温度变化2种情况, 实现了对等效平均服役温度(Tave)及等效最高服役温度(Tmax)的定量评估. 评估结果表明: 叶片叶身中部服役温度最高, 由叶身中部向叶尖和叶根服役温度逐渐降低; 同一截面服役温度由高到低依次为: 进气边>叶盆>排气边>叶背; 服役温度最高的区域为叶身中部截面的进气边, 服役时经历的等效最高服役温度为1050~1100 ℃. 叶片等效平均服役温度及等效最高服役温度的分布规律一致, 但部分部位的等效最高服役温度高于等效平均服役温度, 本研究认为叶片的等效最高服役温度的评估结果更为合理.

关键词 高温合金,涡轮叶片,服役,定量表征,温度场    
Abstract

To get the actual service temperature distribution of turbine blades in aeroengines is very important for the design and maintenance. However, the acquisition of service temperature distribution has always been a challenge due to the complex and severe working condition of turbine blades. In this work, one turbine blade made of directionally solidified DZ125 superalloy was investigated after the service in air for 900 h. The microstructural evolution of DZ125 superalloy after thermal exposure at 900~1100 ℃ without the stress in different time period was also investigated, for comparison. According to microstructural degradation behaviors in the dendritic region, interdendritic region, carbides and grain boundary of DZ125 superalloy before and after service, the volume fraction of γ’ precipitates in the dendritic region was determined as the quantitative characterization parameter. A method to evaluate the service temperature of turbine blades was developed, based on the quantitative characterization of microstructural evolution, such as the relationship between the thermally exposured temperature and volume fraction of γ’ precipitates. The equivalent average service temperature (Tave) and the equivalent maximum service temperature (Tmax) were proposed based on the assumption of the constant temperature during service and the nearly service condition with variable temperature of blades, respectively. The results indicate that the service temperature was higher in the middle of the blade, and became lower at the locations closer to the tip or the root. For each cross-section, the service temperatures of the serviced blade in the descending order were leading edge, pressure side, trailing edge and suction side. The highest service temperature of 1050~1100 ℃ appeared at the leading edge in the middle of the blade. The distribution trend of Tave agreed well with that of Tmax, but Tmax was higher than Tave in some locations of the blade. This work suggests that the evaluation results of Tmax were more reasonable than those of Tave. This method would be helpful to establish the assessment method of the service-induced microstructural damage in turbine blades made of directionally solidified superalloys.

Key wordssuperalloy,    turbine blade,    service,    quantitative characterization,    temperature field
收稿日期: 2016-05-03     
基金资助:* 国家高技术研究发展计划项目2012AA03A513和教育部技术支撑重点项目625010337资助

引用本文:

陈亚东, 郑运荣, 冯强. 基于微观组织演变的DZ125定向凝固高压涡轮叶片服役温度场的评估方法研究*[J]. 金属学报, 2016, 52(12): 1545-1556.
Yadong CHEN, Yunrong ZHENG, Qiang FENG. EVALUATING SERVICE TEMPERATURE FIELD OF HIGH PRESSURE TURBINE BLADES MADE OF DIRECTIONALLY SOLIDIFIED DZ125 SUPERALLOY BASED ON MICRO-STRUCTURAL EVOLUTION. Acta Metall Sin, 2016, 52(12): 1545-1556.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2016.00170      或      https://www.ams.org.cn/CN/Y2016/V52/I12/1545

图1  服役900 h的DZ125合金一级涡轮叶片示意图
图2  服役900 h的DZ125合金叶片榫头部位不同区域的典型显微组织
图3  服役900 h的DZ125合金叶片A-3截面叶盆部位不同区域的典型显微组织
图4  服役900 h的DZ125合金叶片5个截面的进气边枝晶干处的典型显微组织
图5  服役900 h的DZ125合金叶片A-3截面不同部位枝晶干处的典型显微组织
图6  服役900 h的DZ125合金叶片不同截面不同部位枝晶干处的γ’相体积分数
图7  DZ125合金叶片经不同温度不同时间热暴露后(空冷)枝晶干处的典型显微组织
图8  叶片材料DZ125合金在900~1100 ℃不同时间热暴露后枝晶干处的γ’相体积分数
图9  DZ125合金在400~1400 ℃范围内的相组成-温度平衡相图
图10  服役900 h的DZ125合金叶片Tave的分布
Location Leading edge Pressure side Suction side Trailing edge
Section A-1 950~1000 950~1000 ≤900 ≤900
Section A-2 1050~1100 950~1000 ≤900 900~950
Section A-3 1050~1100 1000~1050 ≤900 950~1000
Section A-4 1050~1100 950~1000 ≤900 ≤900
Section A-5 ≤900 ≤900 ≤900 ≤900
表1  服役900 h的DZ125合金叶片等效平均服役温度(Tave)的评估结果
Location Leading edge Pressure side Suction side Trailing edge
Section A-1 1000~1050 1000~1050 ≤900 ≤900
Section A-2 1050~1100 1000~1050 ≤900 950~1000
Section A-3 1050~1100 1000~1050 ≤900 1000~1050
Section A-4 1050~1100 950~1000 ≤900 ≤900
Section A-5 ≤900 ≤900 ≤900 ≤900
表2  服役900 h的DZ125合金叶片等效最高服役温度(Tmax)的评估结果
[1] Dong Z G, Wang M, Li X X, Teng B Q. J Steel Res, 2011; 23: 455
[1] (董志国, 王鸣, 李晓欣, 滕佰秋. 钢铁研究学报, 2011; 23: 455)
[2] Ali A R A, Janajreh I.Energy Procedia, 2015; 75: 3220
[3] Dye D, Anxin M, Reed R C.In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A eds., Superalloys 2008, Warrendale: Minerals, Metals & Materials Soc, 2008: 911
[4] Cheng W F, Wen Z T, Guang C B.Aerosp Sci Technol, 2014; 39: 588
[5] Wen Z X, Hou N, Wang B.Multi Model Mater Str, 2010; 6: 508
[6] Carter T J.Eng Fail Anal, 2005; 12: 237
[7] Kim S G, Hwang Y H, Kim T G, Shu C M.Eng Fail Anal, 2008; 15: 394
[8] Tong J Y, Ding X F, Wang M L, Zheng Y R, Yagi K, Feng Q.Mater Sci Eng, 2014; A618: 605
[9] Yang J X, Zheng Q, Sun X F, Guan H R, Hu Z Q.Mater Sci Eng, 2007; A457: 148
[10] Miura N, Nakata K, Miyazaki M, Hayashi Y, Kondo Y.In: Chandra T, Reimers W, Wanderka N, Ionescu M eds., 6th Int Conf on Processing and Manufacturing of Advanced Materials, Berlin: Materials Science Forum, 2010: 2291
[11] Wu X, Beres W, Zhang Z, Reed P.In: Badyda K, Bujalski W, Milewski J, Warchol M, Nowowiejska U eds., ASME Turbo Expo 2010 Power for Land, Sea and Air, Glasgow: ASME Press, 2010: 499
[12] Xu X, Yu Z.Eng Fail Anal, 2007; 14: 1322
[13] Feng Q, Tong J Y, Zheng Y R, Wang M L, Wei W J, Zhao H L, Yuan X F, Ding X F.Mater China, 2012; 31(12): 21
[13] (冯强, 童锦艳, 郑运荣, 王美玲, 魏文娟, 赵海龙, 袁晓飞, 丁贤飞. 中国材料进展, 2012; 31(12): 21)
[14] Cai Y L, Zheng Y R.Metallographic Research of Superalloys. Beijing: National Defense Industry Press, 1986: 228
[14] (蔡玉林, 郑运荣. 高温合金的金相研究. 北京: 国防工业出版社, 1986: 228)
[15] Yuan X F, Song J X, Zheng Y R, Huang Q, Yagi K, Xiao C B, Feng Q.J Alloys Compd, 2016; 662: 583
[16] Yuan X F, Song J X, Zheng Y R, Huang Q, Yagi K, Xiao C B, Feng Q.Mater Sci Eng, 2016; A651: 734
[17] Wang C S, Zhang J, Liu L, Fu H Z.J Alloys Compd, 2010; 508: 440
[18] Miura N, Kondo Y.J ASTM Int, 2011; 9: 1
[19] Murakumo T, Kobayashi T, Koizumi Y, Harada H.Acta Mater, 2004; 52: 3737
[20] Yu Y N, Yang P, Qiang W J, Chen L.Foundations of Materials Science. Beijing: High Education Press, 2006: 26
[20] (余永宁, 杨平, 强文江, 陈冷. 材料科学基础. 北京: 高等教育出版社, 2006: 266)
[21] Giraud R, Hervier Z, Cormier J, Staint-Martin G, Hamon F, Mihet X, Mendez J.Metall Mater Trans, 2012; 44: 131
[22] Roebuck B, Cox D, Reed R.Scr Mater, 2001; 44: 917
[23] Liu P C, Zhang X N, Ge L, Li X.J Chin Electron Microsc Soc, 2015; 34: 298
[23] (刘程鹏, 张晓娜, 葛麟, 李宪. 电子显微学报, 2015; 34: 298)
[24] Pierret S, Etter T, Evans A, Swygenhoven H V.Acta Mater, 2013; 61: 1478
[25] Reyhani M R, Alizadeh M, Fathi A, Khaledi H.Propul Power Res, 2013; 2: 148
[1] 刘金来, 叶荔华, 周亦胄, 李金国, 孙晓峰. 一种单晶高温合金的弹性性能的各向异性[J]. 金属学报, 2020, 56(6): 855-862.
[2] 金学军,龚煜,韩先洪,杜浩,丁伟,朱彬,张宜生,冯毅,马鸣图,梁宾,赵岩,李勇,郑菁桦,石朱生. 先进热成形汽车钢制造与使用的研究现状与展望[J]. 金属学报, 2020, 56(4): 411-428.
[3] 马德新,王富,徐维台,徐文梁,赵运兴. 高温合金单晶铸件中条纹晶的形成机制[J]. 金属学报, 2020, 56(3): 301-310.
[4] 赵旭,孙元,侯星宇,张洪宇,周亦胄,丁雨田. 取向偏差对镍基单晶高温合金钎焊接头组织与力学性能的影响[J]. 金属学报, 2020, 56(2): 171-181.
[5] 刘兴军, 陈悦超, 卢勇, 韩佳甲, 许伟伟, 郭毅慧, 于金鑫, 魏振帮, 王翠萍. 新型钴基高温合金多尺度设计的研究现状与展望[J]. 金属学报, 2020, 56(1): 1-20.
[6] 吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
[7] 杜金辉,吕旭东,董建新,孙文儒,毕中南,赵光普,邓群,崔传勇,马惠萍,张北江. 国内变形高温合金研制进展[J]. 金属学报, 2019, 55(9): 1115-1132.
[8] 毕中南,秦海龙,董志国,王相平,王鸣,刘永泉,杜金辉,张继. 高温合金盘锻件制备过程残余应力的演化规律及机制[J]. 金属学报, 2019, 55(9): 1160-1174.
[9] 胡斌,李树索,裴延玲,宫声凯,徐惠彬. <111>取向小角偏离对一种镍基单晶高温合金蠕变性能的影响[J]. 金属学报, 2019, 55(9): 1204-1210.
[10] 张北江,黄烁,张文云,田强,陈石富. 变形高温合金盘材及其制备技术研究进展[J]. 金属学报, 2019, 55(9): 1095-1114.
[11] 张国庆,张义文,郑亮,彭子超. 航空发动机用粉末高温合金及制备技术研究进展[J]. 金属学报, 2019, 55(9): 1133-1144.
[12] 李嘉荣,谢洪吉,韩梅,刘世忠. 第二代单晶高温合金高周疲劳行为研究[J]. 金属学报, 2019, 55(9): 1195-1203.
[13] 江河,董建新,张麦仓,姚志浩,杨静. 服役条件下镍基高温合金应力松弛微观机制[J]. 金属学报, 2019, 55(9): 1211-1220.
[14] 张军,介子奇,黄太文,杨文超,刘林,傅恒志. 镍基铸造高温合金等轴晶凝固成形技术的研究和进展[J]. 金属学报, 2019, 55(9): 1145-1159.
[15] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.