Please wait a minute...
金属学报  2013, Vol. 49 Issue (7): 797-803    DOI: 10.3724/SP.J.1037.2013.00061
  论文 本期目录 | 过刊浏览 |
水下湿法FCAW焊缝成形的数值分析
赵博1),武传松1),贾传宝2),袁新2)
1)山东大学材料液固结构演变与加工教育部重点实验室, 济南 250061
2)山东省科学院海洋仪器仪表研究所 山东省特种焊接技术重点实验室, 青岛 266001
NUMERICAL ANALYSIS OF THE WELD BEAD PROFILES IN UNDERWATER WET FLUX-CORED ARC WELDING
ZHAO Bo1), WU Chuansong1),JIA Chuanbao2), YUAN Xin2)
1)Key Laboratory for Liquid-Solid Structure Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061
2)Shandong Provincial Key Laboratory of Special Welding Technology,Institute of Oceanographic Instrumentation, Shandong Academy of Sciences, Qingdao 266001
全文: PDF(1617 KB)  
摘要: 

从陆上空气中气体保护焊接和水下湿法气体保护焊接的共性与特性入手,考虑水下湿法焊接热过程的特点, 应用有限元软件SYSWELD,建立了水下湿法药芯焊丝熔化极气体保护电弧焊接(FCAW)热过程和温度场的数值分析模型,计算了4组工艺参数下焊缝成形与形状尺寸的典型数据, 并与实验结果进行了对比,验证了所建立的热源分布模式和水下湿法焊接有限元模型能够模拟水下电弧的作用特点和水下湿法焊接接头的成形特点.实验结果表明, 水下FCAW焊接焊缝成形的规律与常规的熔化极气体保护电弧焊接相似,但同样焊接参数下水下焊接的焊缝更窄, 熔深更大.

关键词 水下湿法焊接药芯焊丝熔化极气体保护焊接温度场焊缝成形    
Abstract

Underwater wet flux-cored arc welding (FCAW) has great potential prospects of wide application in ocean engineering due to its easiness of automation and high weld quality. However, the thermal process of underwater wet welding is more complicated: the arc energy distribution is more concentrated in high-pressure environment of underwater, the convection heat transfer coefficient of the weldment under water is much larger than that in air. This study focuses on establishing the numerical model for analyzing the thermal process and the temperature field in underwater wet FCAW by using the FEM software SYSWELD. Both the generalities and peculiarities of the conventional GMAW (gas metal arc welding) in air and underwater wet FCAW processes are taken into consideration, especially the two remarkable characteristics of underwater wet welding, i.e., the water compressing action to the arc, and the enhanced heat losses caused by the surrounding water. Based on the calculated temperature profiles, the weld bead shape and sizes are predicted in underwater FCAW, which lays the foundation for the process optimization. It is found that under 4 groups of typical welding conditions the calculated weld bead dimensions are in agreement with the experimental ones, which validated the energy distribution pattern of the heat source and the numeric model for underwater wet welding. Experiments showed that the weld bead was thinner and deeper in underwater wet welding than that in conventional GMAW under the same welding parameters, while the variation regularity of weld bead profile is similar.

Key wordsunderwater wet welding    flux-cored arc welding    temperature field    weld bead profile
收稿日期: 2013-01-28     
基金资助:

国家高技术研究发展计划资助项目2008AA092901

通讯作者: 武传松     E-mail: wucs@sdu.edu.cn
作者简介: 赵博, 男, 1988年生, 博士生

引用本文:

赵博,武传松,贾传宝,袁新. 水下湿法FCAW焊缝成形的数值分析[J]. 金属学报, 2013, 49(7): 797-803.
ZHAO Bo, WU Chuansong, JIA Chuanbao, YUAN Xin. NUMERICAL ANALYSIS OF THE WELD BEAD PROFILES IN UNDERWATER WET FLUX-CORED ARC WELDING. Acta Metall Sin, 2013, 49(7): 797-803.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00061      或      https://www.ams.org.cn/CN/Y2013/V49/I7/797

[1] Anand A, Khajuria A.  Int J Mech Eng Rob Res, 2013; 2: 215

[2] Song B T.  Underwater Welding and Cutting. Beijing: China Machine Press, 1989:5
(宋宝天. 水下焊接与切割. 北京: 机械工业出版社, 1989: 5)
[3] Rowe M D, Liu S, Reynolds T J.  Weld J, 2002; 81(8): 156
[4] Rowe M D, Liu S.  Sci Technol Weld Join, 2001; 6: 387
[5] Ibarra S, Grubbs C E, Liu S. In: Liu S, Olson D L, Smith C, Spencer J S eds.,Proceedings: International Workshop on Underwater Welding of Marine Structures,New Orleans: American Bureau of Shipping, 1994: 49
[6] Kang D.  PhD Dissertation, Ohio State University, Diss, 1996
[7] Chen B, Zhang H T, Feng J C.  Appl Mech Mater, 2013; 300: 500
[8] Puchol R Q, Gonzalez L P, Scott A D, Bracarense A Q, Pessoa E C P.  Weld Int, 2010; 24: 911
[9] Pessoa E C P, Bracarense A Q, Zica E M, Liu S, Perez-Guerrero F.J Mater Process Technol, 2006; 179: 239
[10] Rodriguez--Sacuteanchez J E, Rodriguez-Castellanos A,Perez-Guerrero F, Carbajal-Romero M F, Liu S.  Fatigue Fract
[11] Zhang H T, Jiang W J, Feng J C, Zhong S S.  Adv Mater Res, 2011; 337: 448
[12] Wu C S.  Weld Joining, 2010; (5): 1
(武传松. 焊接, 2010; (5): 1)
[13] The Welding Institute, E. O. Paton Electric Welding Institute, translated by Jiao X D, Zhou C F, Shen Q P, Liu D H, Chen Y.Underwater Wet Welding and Cutting. Beijing: Petroleum Industry Press, 2007: 37
(英国焊接研究所,乌克兰巴顿电焊研究所 著, 焦向东, 周灿丰, 沈秋平, 刘德华, 陈煜 译.水下湿式焊接与切割. 北京: 石油工业出版社, 2007: 37)
[14] Zhang H T, Gao H Y, Jiang W J, Zhong S S.  Appl Mech Mater, 2011; 80: 704
[15] Jia C B, Zhang T, Maksimov S Y, Yuan X.  J Mater Process Technol, 2013; 213: 1370
[16] Suga Y.  Welding Under Extreme Conditions. Oxford: Pergamon Press, 1989: 207
[17] Suga Y, Hasui A.  Weld Int, 1989; 3: 131
[18] Schmidt H P, Gunter S.  IEEE Trans Plasma Sci, 1996; 24: 1229
[19] Zhao H X.  PhD Dissertation, Beijing University of Chemical Technology, 2007
(赵华夏. 北京化工大学博士学位论文, 2007)
[20] Yang Q M.  PhD Dissertation, South China University of Technology, Guangzhou,1996
(杨乾铭. 华南理工大学博士论文, 广州, 1996)
[21] Azar A S, Woodward N, Fostervoll H, Akselsen O M.  J Mater Process Technol, 2012; 212: 211
[22] Li Z G, Zhang H, Jia J P.  Trans Chin Weld Inst, 2010; 31(7): 17
(李志刚, 张华, 贾剑平. 焊接学报, 2010; 31(7): 17)
[23] Li C X, Zhen X S, Jin J Z.  Foundry, 2001; 50(1): 141
(李朝霞, 郑贤淑, 金俊泽. 铸造, 2001; 50(1): 141)
[24] Yang S M, Tao W Q.  Heat Transfer. 4th Ed., Beijing: Higher Education Press, 2006: 8
(杨世铭, 陶文铨. 传热学. 第四版, 北京: 高等教育出版社, 2006: 8)
[1] 刘新华, 付华栋, 何兴群, 付新彤, 江燕青, 谢建新. Cu-Al复合材料连铸直接成形数值模拟研究[J]. 金属学报, 2018, 54(3): 470-484.
[2] 种晓宇, 汪广驰, 杜军, 蒋业华, 冯晶. ZTAp/HCCI复合材料凝固过程中的温度场和热应力的数值模拟[J]. 金属学报, 2018, 54(2): 314-324.
[3] 陈亚东, 郑运荣, 冯强. 基于微观组织演变的DZ125定向凝固高压涡轮叶片服役温度场的评估方法研究*[J]. 金属学报, 2016, 52(12): 1545-1556.
[4] 薛鹏, 张星星, 吴利辉, 马宗义. 搅拌摩擦焊接与加工研究进展*[J]. 金属学报, 2016, 52(10): 1222-1238.
[5] 徐庆东,林鑫,宋梦华,杨海欧,黄卫东. 激光成形修复2Cr13不锈钢热影响区的组织研究[J]. 金属学报, 2013, 49(5): 605-613.
[6] 庞瑞朋,王福明,张国庆,李长荣. 基于3D-CAFE法对430铁素体不锈钢凝固热参数的研究[J]. 金属学报, 2013, 49(10): 1234-1242.
[7] 魏洁 董俊华 柯伟. 热轧螺纹钢化学剂冷却过程温度场的数值模拟及实验研究[J]. 金属学报, 2012, 48(1): 115-121.
[8] 冯明杰 王恩刚 赫冀成. 高速钢复合轧辊连铸复合过程温度场的数值模拟 I. 石墨铸型法[J]. 金属学报, 2011, 47(12): 1495-1502.
[9] 冯明杰 王恩刚 赫冀成. 高速钢复合轧辊连铸复合过程温度场的数值模拟 II. 铜结晶器法[J]. 金属学报, 2011, 47(12): 1503-1512.
[10] 胥国祥 武传松 秦国梁 王旭友 林尚扬. 激光+GMAW复合热源焊焊缝成形的数值模拟 III. 电弧脉冲作用的处理与热源模型的改进[J]. 金属学报, 2009, 45(1): 107-112.
[11] 胥国祥; 武传松; 秦国梁; 王旭友; 林尚扬 . 激光+ GMAW复合热源焊焊缝成形的数值模拟I. 表征激光作用的体积热源分布模式[J]. 金属学报, 2008, 44(4): 478-482 .
[12] 于海岐 朱苗勇. 圆坯结晶器电磁搅拌过程三维流场与温度场数值模拟[J]. 金属学报, 2008, 44(12): 1465-1473.
[13] 张琦; 王同敏; 李廷举; 金俊泽 . 行波磁场作用下空心管坯的两相凝固数值模拟[J]. 金属学报, 2007, 43(6): 668-672 .
[14] 杨刚; 李宝宽; 于洋; 齐凤升 . 薄板坯连铸结晶器铜板的三维传热分析[J]. 金属学报, 2007, 43(3): 332-326 .
[15] 封小松; 陈彦宾; 李俐群 . 镀锌板激光钎焊温度场的数值模拟[J]. 金属学报, 2006, 42(8): 882-886 .