Please wait a minute...
金属学报  2014, Vol. 50 Issue (11): 1403-1412    DOI: 10.11900/0412.1961.2014.00300
  本期目录 | 过刊浏览 |
定向凝固藕状多孔Al生长过程的模拟仿真
杨倩倩1, 刘源1,2(), 李言祥1,2
1 清华大学材料学院, 北京 100084
2 清华大学先进成形制造教育部重点实验室, 北京 100084
MODELING AND SIMULATION OF STRUCTURAL FORMATION OF POROUS ALUMINUM IN GASAR SOLIDIFICATION
YANG Qianqian1, LIU Yuan1,2(), LI Yanxiang1,2
1 School of Materials Science and Engineering, Tsinghua University, Beijing 100084
2 Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Tsinghua University, Beijing 100084
引用本文:

杨倩倩, 刘源, 李言祥. 定向凝固藕状多孔Al生长过程的模拟仿真[J]. 金属学报, 2014, 50(11): 1403-1412.
Qianqian YANG, Yuan LIU, Yanxiang LI. MODELING AND SIMULATION OF STRUCTURAL FORMATION OF POROUS ALUMINUM IN GASAR SOLIDIFICATION[J]. Acta Metall Sin, 2014, 50(11): 1403-1412.

全文: PDF(2900 KB)   HTML
摘要: 

通过对Gasar凝固过程中的传质、气泡形核、气孔生长、中断及脱离等的理论分析, 建立了一个描述单气孔演变过程的非稳态三维模型, 并采用有限差分的方法模拟了不同凝固速率下定向凝固多孔Al的气孔形貌. 基于Al-H2系的研究结果表明: 当凝固速率在0.15~0.005 mm/s范围内时, 固/气两相能够维持协同生长, 气孔的平均孔径分布在100~1100 mm之间, 但随凝固速率的降低会逐渐增加, 气孔长度亦随凝固速率的降低逐渐增加, 长径比则基本保持在40左右; 当凝固速率为0.015 mm/s时, 气孔孔径的模拟值与实验值吻合较好, 之后随凝固速率的降低, 模拟孔径略低于实验值, 分析认为, 实际凝固过程中熔体上方的H2向熔体内的不断扩散是导致该差异的主要原因; 随着熔体过热度和H2分压的逐渐增大, 对应藕状多孔Al固/气两相协同生长凝固速率范围的最大值由不足0.01 mm/s先逐渐增加之后稳定在0.15 mm/s, 最小值则由0.0001 mm/s左右逐渐增加至约0.01 mm/s; 对Al-H2系和Cu-H2系相关参数的比较分析表明, H2在金属熔体中的溶解度是决定Al-H2系Gasar结构中固/气两相协同生长凝固速率范围的主要参数.

关键词 定向凝固协同生长模拟仿真多孔Al凝固速率    
Abstract

The solid/gas eutectic unidirectional solidification process is a new kind of technology fabricating the lotus-type porous structure. Besides having the properties of large specific surface area, excellent sound absorption, penetrating performance etc. of traditional porous materials, the particularity of the lotus-type porous structure makes it has extraordinary mechanical and thermal properties. There is a great potential for lotus-type porous aluminum in the field of lightweight engineering and heat dissipation of chip owing to its low density, outstanding corrosion resistance and high thermal conductivity. However, the fabrication of lotus-type porous aluminum has always been more difficulty than other metals. Until porous aluminum with excellent pore structure was fabricated under very small solidification rates (0.008~0.015 mm/s) and high superheat degrees of melt (240~340 K), the proper processing parameters were recognized to be essential for the coupled growth of solid/gas phases for Al-H2 system, especially the solidification rate. In this work, a three-dimensional time-dependent model describing the evolution of single pore was established based on the theoretical analysis of mass transfer, gas bubble nucleation, pore growth, interruption and detachment. The morphology of single pore under different solidification rates were simulated during the Gasar process by using the finite difference method for Al-H2 system. The research reveals: coupled growth of solid/gas phases can be achieved under the solidification rates from 0.15 mm/s to 0.005 mm/s. The average pore diameter which ranges from 100 mm to 1100 mm increases with decreasing the solidification rate. The pore length also increases while the pore aspect ratio is nearly a constant about 40 with decreasing the solidification rate. The simulated average pore diameter is in good agreement with the experimental values when solidification rate equals to 0.015 mm/s, and then being slightly lower than the experimental ones with decreasing the solidification rate. The diffusion of hydrogen into the melt during the solidification process is regarded as the main reason of the discrepancy between simulated and experimental average pore diameters. The maximum value of the simulated solidification rates for coupled growth of solid/gas phases in Al-H2 system first increases from less than 0.01 mm/s to 0.15 mm/s and then being a constant, while the minimum ones increase from about 0.0001 mm/s to 0.01 mm/s with improving the overheat degree of melt and hydrogen partial pressure. By comparing the relative parameters of Al-H2 and Cu-H2 systems, the solubility of hydrogen is regarded to be the main parameter which determines solidification rates of coupled growth of solid/gas phases for Al-H2 system.

Key wordsunidirectional solidification    coupled growth    modeling and simulation    porous aluminum    solidification rate
收稿日期: 2014-09-04     
ZTFLH:  TG146  
基金资助:* 国家自然科学基金项目51271096和教育部新世纪优秀人才支持计划项目NCET-12-0310资助
作者简介: null

杨倩倩, 女, 1986年生, 博士生

图1  理想藕状多孔结构横截面示意图
图2  熔体中的传质边界条件和坐标系
图3  Gasar凝固中Dt时间前后气孔生长示意图
图4  浓度场网格划分示意图
图5  浓度场气相单元确定示意图
图6  不同凝固速率下气孔生长纵截面形貌的仿真图
图7  不同凝固速率下气孔平均孔径的模拟值与实验值[21]的比较
图8  不同凝固速率下的气孔长度和长径比的模拟结果
图9  不同凝固速率下气孔生长界面前沿的浓度场分布模拟结果
图10  H2往熔体内扩散的示意图
图11  不同熔体过热度DT和H2分压pH2条件下Al-H2系固/气两相协同生长的凝固速率范围
图12  不同凝固速率下Al-H2系中H2逸出的临界熔体过热度ΔT′和H2分压 p ′ H 2
[1] Banhart J. Prog Mater Sci, 2001; 46: 559
[2] Nakajima H. Prog Mater Sci, 2007; 52: 1091
[3] Jiang G R, Li Y X, Liu Y. Metall Mater Trans, 2010; 41A: 3405
[4] Li Z J, Jin Q L, Yang T W, Jiang Y H, Zhou R. Acta Metall Sin, 2013; 49: 757
[4] (李再久, 金青林, 杨天武, 蒋业华, 周 荣. 金属学报, 2013; 49: 757)
[5] Shapovalov V I. US Pat, 5181549, 1993
[6] Simone A E, Gibson L J. Acta Mater, 1996; 44: 1437
[7] Hyun S K, Nakajima H. Mater Sci Eng, 2003; A340: 258
[8] Muramatsu K, Ide T, Nakajima H, Eaton J K. J Heat Transfer, 2013; 135: 072601
[9] Chen L T, Zhang H W, Liu Y, Li Y X. Acta Metall Sin, 2012; 48: 329
[9] (陈刘涛, 张华伟, 刘 源, 李言祥. 金属学报, 2012; 48: 329)
[10] Zhang H W, Chen L T, Liu Y, Li Y X. Int J Heat Mass Transfer, 2013; 56: 172
[11] Nakajima H. Proc Jpn Acad Ser B, 2010; 86: 884
[12] Zhang H W, Li Y X, Liu Y. Acta Metall Sin, 2006; 42: 1165
[12] (张华伟, 李言祥, 刘 源. 金属学报, 2006; 42: 1165)
[13] Park J S, Hyun S K, Suzuki S, Nakajima H. Acta Mater, 2007; 55: 5646
[14] Zhou R, Li Z H, Jiang Y H, Zhou R F, Yang T W, Jin Q L. Chin Pat, 200910094262.8, 2009
[14] (周 荣, 黎振华, 蒋业华, 周荣锋, 杨天武, 金青林. 中国专利, 200910094262.8, 2009)
[15] Zahrani M M, Meratian M, Kabiri Y. Mater Lett, 2012; 85: 14
[16] Zhou R, Jiang Y H, Li Z H, Jin Q L, Yang T W, Zhou R F. Chin Pat, 200910094261.3, 2009
[16] (周 荣, 蒋业华, 黎振华, 金青林, 杨天武, 周荣锋. 中国专利, 200910094261.3, 2009)
[17] Tane M, Nakajima H. J Mater Res, 2008; 23: 849
[18] Liu Y, Li Y X, Zhang H W. Acta Metall Sin, 2004; 40: 1121
[18] (刘 源, 李言祥, 张华伟. 金属学报, 2004; 40: 1121)
[19] Zhang H W, Li Y X, Liu Y. Acta Metall Sin, 2007; 43: 11
[19] (张华伟, 李言祥, 刘 源. 金属学报, 2007; 43: 11)
[20] Komissarchuk O, Xu Z B, Hao H, Zhang X L, Vladimir K. China Foundry, 2014; 11: 1
[21] Ide T, Iio Y, Nakajima H. Metall Mater Trans, 2012; 43A: 5140
[22] Drenchev L, Sobczak J, Malinov S, Sha W. Modell Simul Mater Sci Eng, 2006; 14: 663
[23] Li Y X,Wu A P. Principle of Materials Processing. Beijing: Tsinghua University Press, 2005: 83
[23] (李言祥,吴爱萍. 材料加工原理. 北京: 清华大学出版社, 2005: 83)
[24] Zhang H W, Li Y X, Liu Y. Acta Metall Sin, 2007; 43: 113
[24] (张华伟, 李言祥, 刘 源. 金属学报, 2007; 43: 113)
[25] Kurz W, Fisher D J. Fundamental of Solidification. Switzerland: Trans Tech Publications, 1998: 22
[26] Zhang H W, Li Y X. Acta Phys Sin, 2007; 56: 4864
[26] (张华伟, 李言祥. 物理学报, 2007; 56: 4864)
[27] Chen Z F. Bachelor Thesis, Tsinghua University, Beijing, 2011
[27] (陈自发. 清华大学学士学位论文, 北京, 2011)
[28] Liu Y, Li Y X. Scr Mater, 2003; 49: 379
[29] Li Z J, Jin Q L, Yang T W, Zhou R, Jiang Y H. Acta Metall Sin, 2014; 50: 507
[29] (李再久, 金青林, 杨天武, 周 荣, 蒋业华. 金属学报, 2014; 50: 507)
[30] Zhang H W. PhD Dissertation, Tsinghua University, Beijing, 2006
[30] (张华伟. 清华大学博士学位论文, 北京, 2006)
[31] Fisher D J. Hydrogen Diffusion in Metals—A 30 Year Retrospective. Switzerland: Scitec Publications Ltd, 1999: 37
[32] Sigrist P, Feichtinger H K, Marincek B. Z Phys Chem-Frankfurt, 1977; 107: 211
[1] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[4] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[5] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[6] 朱玉平, 盛乃成, 谢君, 王振江, 荀淑玲, 于金江, 李金国, 杨林, 侯桂臣, 周亦胄, 孙晓峰. 高钨镍基高温合金K416BW相的析出行为[J]. 金属学报, 2021, 57(2): 215-223.
[7] 张小丽, 冯丽, 杨彦红, 周亦胄, 刘贵群. 二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响[J]. 金属学报, 2020, 56(7): 969-978.
[8] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[9] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[10] 方辉,薛桦,汤倩玉,张庆宇,潘诗琰,朱鸣芳. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟[J]. 金属学报, 2019, 55(5): 664-672.
[11] 唐文书,肖俊峰,李永君,张炯,高斯峰,南晴. 再热恢复处理对蠕变损伤定向凝固高温合金γ′相的影响[J]. 金属学报, 2019, 55(5): 601-610.
[12] 杨燕, 杨光昱, 罗时峰, 肖磊, 介万奇. Mg-14.61Gd合金的定向凝固组织及生长取向[J]. 金属学报, 2019, 55(2): 202-212.
[13] 金浩, 贾清, 刘荣华, 线全刚, 崔玉友, 徐东生, 杨锐. 籽晶制备及Ti-47Al合金PST晶体取向控制[J]. 金属学报, 2019, 55(12): 1519-1526.
[14] 侯渊, 任忠鸣, 王江, 张振强, 李霞. 纵向静磁场对定向凝固GCr15轴承钢柱状晶向等轴晶转变的影响[J]. 金属学报, 2018, 54(5): 801-808.
[15] 刘林, 孙德建, 黄太文, 张琰斌, 李亚峰, 张军, 傅恒志. 高梯度定向凝固技术及其在高温合金制备中的应用[J]. 金属学报, 2018, 54(5): 615-626.