Please wait a minute...
金属学报  2010, Vol. 46 Issue (4): 506-512    DOI: 10.3724/SP.J.1037.2009.00696
  论文 本期目录 | 过刊浏览 |
凝固速率对Nb-Ti-Si基合金整体定向凝固组织及固/液界面形态的影响
王勇;郭喜平
西北工业大学凝固技术国家重点实验室; 西安 710072
EFFECT OF SOLIDIFYING RATE ON INTEGRALLY DIRECTIONALLY SOLIDIFIED MICROSTRUCTURE AND SOLID/LIQUID INTERFACE MORPHOLOGY OF AN Nb–Ti–Si BASE ALLOY
WANG Yong; GUO Xiping
State Key Laboratory of Solidification Processing; Northwestern Polytechnical University; Xi’an 710072
引用本文:

王勇 郭喜平. 凝固速率对Nb-Ti-Si基合金整体定向凝固组织及固/液界面形态的影响[J]. 金属学报, 2010, 46(4): 506-512.
, . EFFECT OF SOLIDIFYING RATE ON INTEGRALLY DIRECTIONALLY SOLIDIFIED MICROSTRUCTURE AND SOLID/LIQUID INTERFACE MORPHOLOGY OF AN Nb–Ti–Si BASE ALLOY[J]. Acta Metall Sin, 2010, 46(4): 506-512.

全文: PDF(4027 KB)  
摘要: 

在2050℃的熔体温度下, 在自行研制的定向凝固炉内实现了Nb-Ti-Si-Cr-Hf-Al-B-Y超高温合金的有坩埚整体定向凝固. 采用XRD, SEM, EDS等方法分析了凝固速率分别为2.5, 5, 10, 20, 50和100 μm/s时的整体定向凝固组织、组成相的择优取向及固/液界面形貌, 并讨论了其共晶生长机制. 结果表明: 合金的定向凝固组织主要由沿着试棒轴向排列的横截面为多边形的柱状初生(Nb, X)5Si3(X=Ti, Hf, Cr)相与耦合生长的层片状Nbss/(Nb, X)5Si3共晶团(Nbss表示铌基固溶体)组成. 横截面上共晶胞界明显.当凝固速率由2.5 μm/s变化到100 μm/s时, 定向凝固组织细化, 固/液界面经历粗胞状→细胞状→胞枝的演化过程. Nbss/(Nb, X)5Si3共晶两相较低的熔化熵及其前沿较大的动力学过冷度是形成规则共晶的主要原因.

关键词 Nb-Ti-Si基合金凝固速率 整体定向凝固 规则共晶 固/液界面形貌    
Abstract

Since temperatures of airfoil surfaces in advanced turbine engines are approaching the limit of nickel base superalloys, Nb–Ti–Si base alloys as their potential materials have attracted much attention recently. Nb–Ti–Si base alloys have high melting temperature, suitable densities, good
elevated temperature creep strength and acceptable room temperature fracture toughness, therefore, they are expected to be employed in the temperature range of 1200—1450 ℃as structural materials. Alloying and directional solidification are generally used to obtain a better combination of room temperaure fracture toughness with high temperature creep strength and oxidation resistance for an elevated–temperature alloy. In this paper, the master alloy ingot with a nominal composition of Nb–20Ti–16Si–6Cr–5Hf–4Al–2B–0.06Y (atomic fraction, %) was prepared by using vacuum consumable arc–melting. The integrally directional solidification of this alloy was conducted in a high vacuum and ultrahigh temperature directional solidification furnace with the use of a ceramic crucible at melt temperature of 2050. The integrally directionally solidified microstructure, preferred orientation of constituent phases and solid/liquid (S/L) interface morphology at different solidifying rate (2.5, 5, 10, 20, 50 and 100 μm/s) for this alloy have been investigated by XRD, SEM and EDS, and the growth mechanism of Nbss/(Nb, X)5Si3 (where Nbss denotes Nb solid solution, X represents Ti, Hf and Cr elements) eutectic in it has been discussed. The results show that the directionally solidified microstructure of the alloy is mainly composed of hexagonally cross–sectioned primary (Nb, X)5Si3 columns and coupled grown lamellar Nbss/(Nb, X)5Si3 eutectic colonies both aligned straight and uprightly along the growth direction. When the solidifying rate varies from 2.5 μm/s to 100 μm/s, the
solid/liqid interface of the alloy undergoes an evolution from coarse cellular, fine cellulaand finally to cellular dendrite morphologies. Both the average diameter of eutectic cells and lamellar spacing in hem decrease with the increase in solidifying rate. The formatin of a regular bss/(Nb, X)5Si3 euecic morphology is attributable to a large kinetic undercoling and a low fusion entropies of alloy phases.

Key wordsNb-Ti-Si base alloy    solidifying rate    integrally directional solidification    regular eutectic microstructure    solid/liquid interface morphology
收稿日期: 2009-10-21     
基金资助:

国家自然科学基金项目50671081及凝固技术国家重点实验室自主研究课题项目07--TP--2008资助

作者简介: 王勇, 男, 1983年生, 硕士生
[1] Bewlay B P, Jackson M R, Zhao J C, Subramanian P R. Metall Mater Trans, 2003; 34A: 2043 [2] Bewlay B P, Jackson M R, Zhao J C, Subramanian P R, Mendiratta M G, Lewandowski J J. MRS Bull, 2003; 28:646 [3] Radhakrishnan R, Bhaduri S, Henager Jr C H. JOM, 1997; 49(1): 41 [4] Li Z, Peng L M. Acta Mater, 2007; 55: 6573 [5] Guo X P, Guo H S, Yao C F, Guan P. Int J Mod Phys,2009; 23B: 1093 [6] Guan P, Guo X P, Ding X, Zhang J, Gao L M, Kusabiraki K. Acta Metall Sin (Engl Lett), 2004; 17: 450 [7] Geng J, Tsakiropoulos P, Shao G. Intermetallics, 2006; 14: 227 [8] Fu H Z, Wei B B, Guo J J. Eng Sci, 2003; 8(5): 1 (傅恒志, 魏炳波, 郭景杰. 中国工程科学, 2003; 8(5): 1) [9] Guo X P, Gao L M, Guan P, Kusabiraki K, Fu H Z. Mater Sci Forum, 2007; 539–543: 3690 [10] Kang Y W, Qu S Y, Song J X, Han Y F. Acta Metall Sin, 2008; 44: 593 (康永旺, 曲士昱, 宋尽霞, 韩雅芳. 金属学报, 2008; 44: 593) [11] Geng J, Tsakiropoulos P. Intermetallics, 2007; 15: 382 [12] Zelenitsas K, Tsakiropoulos P. Intermetallics, 2005; 13: 1079 [13] Li S M, Ma B L, Li X L, Liu L, Fu H Z. Sci China, 2005; 35E: 479 (李双明, 马伯乐, 李晓历, 刘 林, 傅恒志. 中国科学, 2005; 35E: 479) [14] Elliott R. Eutectic Solidification Processing of Crystalline and Glassy Alloys. London: Butterworths & Co. Ltd., 1983: 92 [15] Ye D L, Hu J H. Thermochemical Data Manual of Practical Mineral Inorganic Substance. 2nd Ed., Beijing: China Metallurgy Press, 2002: 676 (叶大伦, 胡建华. 实用无机物热力学数据手册. 第2版, 北京: 冶金工业出版社, 2002: 676) [16] Fu H Z, Guo J J, Liu L, Li J S. Directional Solidification and Processing of Advanced Materials. Beijing: Science Press, 2008: 29 (傅恒志, 郭景杰, 刘林, 李金山. 先进材料定向凝固. 北京: 科学出版社, 2008: 29) [17] Dynys F W, Sayir A. J Eur Ceram Soc, 2005; 25: 1293 [18] Hu H Q. Fundamental of Metallic Solidification. 2nd Ed., Beijing: China Machine Press, 2000: 124, 228 (胡汉起. 金属凝固原理. 第2版, 北京: 机械工业出版社, 2000: 124, 228) [19] Zhou Y H, Hu Z Q, Jie W Q. Solidification Processing. Beijing: China Machine Press, 1998: 158 (周尧和, 胡壮麒, 介万奇. 凝固技术. 北京: 机械工业出版社, 1998: 158)
[1] 朱玉平, 盛乃成, 谢君, 王振江, 荀淑玲, 于金江, 李金国, 杨林, 侯桂臣, 周亦胄, 孙晓峰. 高钨镍基高温合金K416BW相的析出行为[J]. 金属学报, 2021, 57(2): 215-223.
[2] 杨倩倩, 刘源, 李言祥. 定向凝固藕状多孔Al生长过程的模拟仿真[J]. 金属学报, 2014, 50(11): 1403-1412.
[3] 李小飞,郭喜平. 定向凝固Nb-Ti-Si基超高温合金的共晶组织形貌演化[J]. 金属学报, 2013, 49(7): 853-862.
[4] 庞瑞朋,王福明,张国庆,李长荣. 基于3D-CAFE法对430铁素体不锈钢凝固热参数的研究[J]. 金属学报, 2013, 49(10): 1234-1242.
[5] 杨莉莉 郑立静 肖志霞 闫洁 张虎. 抽拉速率对定向凝固Ti-47Al-2Cr-2Nb-0.8B合金组织的影响[J]. 金属学报, 2010, 46(7): 879-884.
[6] 何永胜 郭喜平 郭海生 孙志平. 铌硅化物基超高温合金整体定向凝固组织和固/液界面形态演化[J]. 金属学报, 2009, 45(9): 1035-1041.
[7] 郭志鹏 熊守美 Mei Li John Allison. 压铸过程中铸件-铸型界面换热系数与铸件凝固速率的关系[J]. 金属学报, 2009, 45(1): 102-106.
[8] 陶汪; 陈彦宾; 李俐群; 吴林 . 焊接熔池表面凝固速率测量的新方法[J]. 金属学报, 2008, 44(9): 1131-1135 .
[9] 姚成方; 郭喜平; 郭海生 . Nb-Ti-Si基超高温合金的有坩埚整体定向凝固组织分析[J]. 金属学报, 2008, 44(5): 579-584 .
[10] 刘忠元;李建国;傅恒志. 凝固速率对定向凝固合金DZ22枝晶臂间距和枝晶偏析的影响[J]. 金属学报, 1995, 31(7): 329-332.
[11] 孙力玲;董连科;张济山;唐亚俊;张静华;胡壮麒. 高温合金定向凝固行为的分形分析[J]. 金属学报, 1993, 29(3): 19-24.
[12] 刘俊明;刘治国;吴状春. 非规则共晶定向凝固结构的标度律[J]. 金属学报, 1993, 29(3): 11-18.