|
|
基于恒过热控制的感应加热中间包内钢水的流动与传热 |
唐海燕( ), 李小松, 张硕, 张家泉 |
北京科技大学冶金与生态工程学院 北京 100083 |
|
Fluid Flow and Heat Transfer in a Tundish with Channel Induction Heating for Sequence Casting with a Constant Superheat Control |
TANG Haiyan( ), LI Xiaosong, ZHANG Shuo, ZHANG Jiaquan |
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China |
引用本文:
唐海燕, 李小松, 张硕, 张家泉. 基于恒过热控制的感应加热中间包内钢水的流动与传热[J]. 金属学报, 2020, 56(12): 1629-1642.
Haiyan TANG,
Xiaosong LI,
Shuo ZHANG,
Jiaquan ZHANG.
Fluid Flow and Heat Transfer in a Tundish with Channel Induction Heating for Sequence Casting with a Constant Superheat Control[J]. Acta Metall Sin, 2020, 56(12): 1629-1642.
[1] |
Sahai Y. Tundish technology for casting clean steel: A review [J]. Metall. Mater. Trans., 2016, 47B: 2095
|
[2] |
Mao B, Tao J M, Jiang T X. Tundish channel type induction heating technology for continuous casting [J]. Contin. Cast., 2008, (5): 4
|
[2] |
(毛 斌, 陶金明, 蒋桃仙. 连铸中间包通道式感应加热技术 [J]. 连铸, 2008, (5): 4)
|
[3] |
Cong L, Zhang J M, Lei S W, et al. Numerical simulation on tundish induction heating [J]. Res. Iron Steel, 2014, 42(3): 20
|
[3] |
(丛 林, 张炯明, 雷少武等. 中间包感应加热的数值模拟 [J]. 钢铁研究, 2014, 42(3): 20)
|
[4] |
He F, Zhang L Y, Xu Q Y. Optimization of flow control devices for a T-type five-strand billet caster tundish: Water modeling and numerical simulation [J]. China Foundry, 2016, 13: 166
doi: 10.1007/s41230-016-5132-9
|
[5] |
Wang X Y, Zhao D T, Qiu S T, et al. Effect of tunnel filters on flow characteristics in an eight-strand tundish [J]. ISIJ Int., 2017, 57: 1990
doi: 10.2355/isijinternational.ISIJINT-2017-165
|
[6] |
Ramirez O S D, Torres-Alonso E, Banderas J A R, et al. Thermal and fluid-dynamic optimization of a five strand asymmetric delta shaped billet caster tundish [J]. Steel Res. Int., 2018, 89: 1700428
doi: 10.1002/srin.v89.3
|
[7] |
Morales R D, López-Ramirez S, Palafox-Ramos J, et al. Numerical and modeling analysis of fluid flow and heat transfer of liquid steel in a tundish with different flow control devices [J]. ISIJ Int., 1999, 39: 455
doi: 10.2355/isijinternational.39.455
|
[8] |
Cwudziński A. Numerical and physical modeling of liquid steel active flow in tundish with subflux turbulence controller and dam [J]. Steel Res. Int., 2014, 85: 902
doi: 10.1002/srin.v85.5
|
[9] |
Harnsihacacha A, Piyapaneekoon A, Kowitwarangkul P. Physical water model and CFD studies of fluid flow in a single strand tundish [J]. Mater. Today: Proceedings, 2018, 5: 9220
|
[10] |
Fang Q, Zhang H, Luo R H, et al. Optimization of flow, heat transfer and inclusion removal behaviors in an odd multistrand bloom casting tundish [J]. J. Mater. Res. Technol., 2020, 9: 347
doi: 10.1016/j.jmrt.2019.10.064
|
[11] |
Ueda T, Ohara A, Sakurai M, et al. A tundish provided with a heating device for molten steel [P]. EU Pat, 0119853, 1984
|
[12] |
Mabuchi M, Yoshii Y, Nozaki T, et al. Investigation of the purification of molten steel by using tundish heater: Development on the controlling method of casting temperature in continuous casting V [J]. ISIJ Int., 1984, 70: 118
|
[13] |
Miura R, Nisihara R, Tanaka H, et al. Tundish induction heater of No.2 continuous caster at Yawata works [J]. ISIJ Int., 1995, 81: T30
|
[14] |
Yang B, Lei H, Bi Q, et al. Electromagnetic conditions in a tundish with channel type induction heating [J]. Steel Res. Int., 2018, 89: 1800145
doi: 10.1002/srin.v89.10
|
[15] |
Yue Q, Pei X, Zhang C, et al. Magnetohydrodynamic calculation on double-loop channel induction tundish [J]. Arch. Metall. Mater., 2018, 63: 329
|
[16] |
Xing F, Zheng S G, Zhu M Y. Motion and removal of inclusions in new induction heating tundish [J]. Steel Res. Int., 2018, 89: 1700542
doi: 10.1002/srin.v89.6
|
[17] |
Wang Q, Li B K, Tsukihashi F. Modeling of a thermo-electromagneto-hydrodynamic problem in continuous casting tundish with channel type induction heating [J]. ISIJ Int., 2014, 54(2): 311
doi: 10.2355/isijinternational.54.311
|
[18] |
Tang H Y, Guo L Z, Wu G H, et al. Hydrodynamic modeling and mathematical simulation on flow field and inclusion removal in a seven-strand continuous casting tundish with channel type induction heating [J]. Metals, 2018, 8: 374
doi: 10.3390/met8060374
|
[19] |
Wu G H, Tang H Y, Xiao H, et al. Physical simulation on a 7-strand continuous casting tundish with channel type induction heating [J]. Iron Steel, 2017, 52(11): 20
|
[19] |
(吴光辉, 唐海燕, 肖 红等. 通道式感应加热7流中间包流场的物理模拟 [J]. 钢铁, 2017, 52(11): 20)
|
[20] |
Zhang S, Tang H Y, Liu J W, et al. Structural optimization of a six-strand H-type channel induction heating tundish [J]. J. Iron Steel Res., 2019, 31: 787
|
[20] |
(张 硕, 唐海燕, 刘锦文等. 六流H型通道感应加热中间包的结构优化 [J]. 钢铁研究学报, 2019, 31: 787)
|
[21] |
Tang H Y, Yu M, Li J S, et al. Numerical and physical simulation on inner structure optimization of a continuous casting tundish and its metallurgical effect [J]. J. Univ. Sci. Technol. Beijing, 2009, 31(S1): 38
|
[21] |
(唐海燕, 于 满, 李京社等. 连铸中间包内部结构优化的数理模拟及冶金效果 [J]. 北京科技大学学报, 2009, 31(S1): 38)
|
[22] |
Yang B, Deng A Y, Wang E G. Simulating the magnetic field/transfer phenomenon of the tundish with channel type inducting heating [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2018, 424: 012060
doi: 10.1088/1757-899X/424/1/012060
|
[23] |
Yue Q, Zhang C B, Pei X H. Magnetohydrodynamic flows and heat transfer in a twin-channel induction heating tundish [J]. Ironmak. Steelmak., 2017, 44: 227
doi: 10.1080/03019233.2016.1209919
|
[24] |
Liu H P. State of the art of numerical simulation of magneto-hydro dynamics in the continuous casting process [J]. Contin. Cast., 2015, (1): 7
doi: 10.13228/j.boyuan.issn1005-4006.20150012
|
[24] |
(刘和平. 连铸过程中电磁流体力学的数值模拟现状及发展趋势 [J]. 连铸, 2015, (1): 7)
doi: 10.13228/j.boyuan.issn1005-4006.20150012
|
[25] |
Jiang G Z, Kong J Y, Li G F, et al. Numerical simulation and optimization of flow field in tundish [J]. China Metall., 2008, 18(2): 46
|
[25] |
(蒋国璋, 孔建益, 李公法等. 中间包流场的数值模拟及其优化 [J]. 中国冶金, 2008, 18(2): 46)
|
[26] |
Xing F, Zheng S G, Liu Z H, et al. Flow field, temperature field, and inclusion removal in a new induction heating tundish with bent channels [J]. Metals, 2019, 9: 561
doi: 10.3390/met9050561
|
[27] |
Shi Z M, E J Q, Liu C Y, et al. Numerical simulation of flow phenomena and optimum operation of tundish [J]. J. Cent. South Univ. Technol., 2003, 10: 155
doi: 10.1007/s11771-003-0059-x
|
[28] |
Wen Y M, Han Y S, Liu Q, et al. Optimization of multi-fields coupled molten steel behavior in bloom continuous casting [J]. Iron Steel, 2018, 53(6): 53
|
[28] |
(文艳梅, 韩延申, 刘 青等. 大方坯结晶器内的多物理场模拟优化 [J]. 钢铁, 2018, 53(6): 53)
|
[29] |
Han L H, Yu C M, Qu M L. Numerical simulation of flow and temperature fields in electroslag remelting process [J]. Res. Exp. Lab., 2018, 37(1): 47
|
[29] |
(韩丽辉, 于春梅, 曲明磊. 电渣重熔过程流场和温度场的数值模拟 [J]. 实验室研究与探索, 2018, 37(1): 47)
|
[30] |
Vives C, Ricou R. Magnetohydrodynamic flows in a channel-induction furnace [J]. Metall. Trans., 1991, 22B: 193
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|