Please wait a minute...
金属学报  2020, Vol. 56 Issue (12): 1629-1642    DOI: 10.11900/0412.1961.2020.00194
  本期目录 | 过刊浏览 |
基于恒过热控制的感应加热中间包内钢水的流动与传热
唐海燕(), 李小松, 张硕, 张家泉
北京科技大学冶金与生态工程学院 北京 100083
Fluid Flow and Heat Transfer in a Tundish with Channel Induction Heating for Sequence Casting with a Constant Superheat Control
TANG Haiyan(), LI Xiaosong, ZHANG Shuo, ZHANG Jiaquan
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

唐海燕, 李小松, 张硕, 张家泉. 基于恒过热控制的感应加热中间包内钢水的流动与传热[J]. 金属学报, 2020, 56(12): 1629-1642.
Haiyan TANG, Xiaosong LI, Shuo ZHANG, Jiaquan ZHANG. Fluid Flow and Heat Transfer in a Tundish with Channel Induction Heating for Sequence Casting with a Constant Superheat Control[J]. Acta Metall Sin, 2020, 56(12): 1629-1642.

全文: PDF(3704 KB)   HTML
摘要: 

通过建立电磁-热-流动耦合数学模型,研究了一种六流H型通道感应加热中间包内电磁力的作用特点、钢水的流动及传热规律。对比了感应加热不同应用模式下中间包内流场和温度场特点,探讨了传统冷态水模拟研究方法对该感应加热中间包结构优化的适用性。结果表明,感应加热中间包通道内电磁力呈偏心分布,方向指向通道偏心位置,钢液在通道内旋转流出。裸包方案下,开启感应加热1500 s时比未开启中间包内1号水口处钢水温度高22 K;由于电磁力作用使通道附近水口的短路流加剧、各流一致性变差。但中间包结构优化后,通道附近水口短路流消失,各流温差降低、一致性改善、升温速率加快。模型研究结果揭示了这种新型中间包的冶金机理,同时也表明基于冷态模拟的中间包结构优化方法仍可作为感应加热中包结构设计和优化的重要依据。

关键词 感应加热中间包电磁力温度场流场结构优化    
Abstract

Casting with superheat control is important in improving the quality and stability of steel products and reducing metallurgical defects. In recent years, the channel-type induction heating tundish is among the new technologies that have been used by the steel industry. It exhibits an effective liquid steel temperature control during continuous casting. However, in such technology, the fluid flow and heat transfer are significantly different from those in a conventional tundish. This is because of the implementation of the heating practice and action of the electromagnetic force. In this work, a mathematical model of electromagnetic-thermal-flow coupling is developed to investigate the feature of the electromagnetic force, fluid flow, and heat transfer in a six-strand H-type induction heating tundish. The flow field and temperature field characteristics in the tundish under different application modes of induction heating are compared. Moreover, the applicability of the traditional method of cold water modeling to the structure optimization of tundish with induction heating is discussed. The results indicate the eccentric distribution of the electromagnetic force in the tundish channel, pointing to the eccentric position of the channel. Additionally, the results suggest that the molten steel in the channel flows out with rotation. For case A0, an increase of 22 K in the molten steel temperature is observed after heating for 1500 s at 1000 kW power, compared with that without heating. However, due to the pinch effect of the electromagnetic force, the short-circuit flow at the outlets near the channel intensifies, and the flow consistency in tundish worsens. Compared optimized case A4 with the prototype case A0, the short-circuit flow of the outlets near the channel disappears, the temperature difference among the different flows is reduced, the flow consistency in the whole tundish is improved, and the heating rate is increased. The present study also demonstrates that the tundish structure optimization method under a cold state is still an important evidence for the induction heating state.

Key wordsinduction heating    tundish    electromagnetic force    temperature field    flow field    structural optimization
收稿日期: 2020-06-03     
ZTFLH:  TF777  
基金资助:国家自然科学基金项目(51874033);国家自然科学基金项目(U1860111);北京市自然科学基金项目(2182038)
作者简介: 唐海燕,女,1970年生,教授,博士
图1  H型感应加热中间包结构示意图(a) case A0 (b) channel section (c) case A4
ParameterValueUnit
Tundish capacity54t
Liquid surface depth850mm
Inner diameter of long nozzle85mm
Submerged depth of long nozzle260mm
Inner diameter of submerged entry nozzle32mm
Induction channel diameter140mm
Induction channel length1570mm
Induction channel inclination angle downward3(°)
Height from channel center to tundish bottom284mm
表1  感应加热中间包几何尺寸和操作参数
图2  中间包计算模型网格俯视图Color online
ItemValueUnit
Induction coil frequency50Hz
Iron core relative permeability1000
Coil electric conductivity3.18×107S·m-1
Coil relative permeability1
Air relative permeability1
Conductivity of molten steel7.14×105S·m-1
Relative permeability of molten steel1
Inlet temperature1800K
Density of molten steel8523-0.8358Tkg·m-3
Viscosity of molten steel0.0061Pa·s
Thermal conductivity of molten steel41W·m-1·K-1
Specific heat capacity of molten steel750J·kg-1·K-1
Free surface heat flux15000W·m-2
Bottom heat flux1800W·m-2
Longitudinal wall heat flux4600W·m-2
Transversal wall heat flux4000W·m-2
Channel wall heat flux1200W·m-2
表2  材料参数和边界条件[14,17,23]
图3  感应加热中间包多物理场耦合计算流程
图4  A4方案数值模拟与水模拟实验[20]时间停留分布(RTD)曲线对比
图5  Y方向磁感应强度的数值计算与测量结果[30]对比(a) left channel (b) middle channel
图6  Z=-4 cm通道截面上磁场分布的数值模拟结果(a) left channel (b) middle channel
图7  中间包感应加热通道内电磁力分布Color online
图8  感应加热左通道截面电磁力分布Color online(a) X1-L section (b) X2-L section
图9  有无感应加热2种工况下中间包流线对比Color online(a) without induction heating (b) with induction heating (1000 kW, 200 s)
图10  有无感应加热时通道纵截面速度矢量图对比Color online(a) without induction heating (b) with induction heating (1000 kW, 200 s)
图11  通道X2-L截面速度矢量图(a) without induction heating(b) with induction heating (1000 kW, 200 s)
图12  1000 kW加热功率下加热不同时间时X2截面温度场Color online(a) 200 s (b) 500 s (c) 1500 s (d) 3000 s
图13  开启及未开启感应加热中间包水口纵截面温度场Color online(a) without induction heating (b) with induction heating (1000 kW, 3000 s)
图14  1000 kW加热功率下A0和A4方案不同时刻通道纵截面速度矢量图Color online(a1, a2) 200 s (b1, b2) 500 s (c1, c2) 1500 s (d1, d2) 3000 s
图15  1000 kW加热功率下A0和A4方案不同时刻水口中心截面速度矢量图Color online(a1, a2) 200 s (b1, b2) 500 s (c1, c2) 1500 s (d1, d2) 3000 s
图16  1000 kW加热功率下A0和A4方案不同时刻的通道纵截面温度云图Color online(a1, a2) 200 s (b1, b2) 500 s (c1, c2) 1500 s (d1, d2) 3000 s
图17  1000 kW加热功率下A0和A4方案不同时刻水口中心位置温度云图Color online(a1, a2) 200 s (b1, b2) 500 s (c1, c2) 1500 s (d1, d2) 3000 s
[1] Sahai Y. Tundish technology for casting clean steel: A review [J]. Metall. Mater. Trans., 2016, 47B: 2095
[2] Mao B, Tao J M, Jiang T X. Tundish channel type induction heating technology for continuous casting [J]. Contin. Cast., 2008, (5): 4
[2] (毛 斌, 陶金明, 蒋桃仙. 连铸中间包通道式感应加热技术 [J]. 连铸, 2008, (5): 4)
[3] Cong L, Zhang J M, Lei S W, et al. Numerical simulation on tundish induction heating [J]. Res. Iron Steel, 2014, 42(3): 20
[3] (丛 林, 张炯明, 雷少武等. 中间包感应加热的数值模拟 [J]. 钢铁研究, 2014, 42(3): 20)
[4] He F, Zhang L Y, Xu Q Y. Optimization of flow control devices for a T-type five-strand billet caster tundish: Water modeling and numerical simulation [J]. China Foundry, 2016, 13: 166
doi: 10.1007/s41230-016-5132-9
[5] Wang X Y, Zhao D T, Qiu S T, et al. Effect of tunnel filters on flow characteristics in an eight-strand tundish [J]. ISIJ Int., 2017, 57: 1990
doi: 10.2355/isijinternational.ISIJINT-2017-165
[6] Ramirez O S D, Torres-Alonso E, Banderas J A R, et al. Thermal and fluid-dynamic optimization of a five strand asymmetric delta shaped billet caster tundish [J]. Steel Res. Int., 2018, 89: 1700428
doi: 10.1002/srin.v89.3
[7] Morales R D, López-Ramirez S, Palafox-Ramos J, et al. Numerical and modeling analysis of fluid flow and heat transfer of liquid steel in a tundish with different flow control devices [J]. ISIJ Int., 1999, 39: 455
doi: 10.2355/isijinternational.39.455
[8] Cwudziński A. Numerical and physical modeling of liquid steel active flow in tundish with subflux turbulence controller and dam [J]. Steel Res. Int., 2014, 85: 902
doi: 10.1002/srin.v85.5
[9] Harnsihacacha A, Piyapaneekoon A, Kowitwarangkul P. Physical water model and CFD studies of fluid flow in a single strand tundish [J]. Mater. Today: Proceedings, 2018, 5: 9220
[10] Fang Q, Zhang H, Luo R H, et al. Optimization of flow, heat transfer and inclusion removal behaviors in an odd multistrand bloom casting tundish [J]. J. Mater. Res. Technol., 2020, 9: 347
doi: 10.1016/j.jmrt.2019.10.064
[11] Ueda T, Ohara A, Sakurai M, et al. A tundish provided with a heating device for molten steel [P]. EU Pat, 0119853, 1984
[12] Mabuchi M, Yoshii Y, Nozaki T, et al. Investigation of the purification of molten steel by using tundish heater: Development on the controlling method of casting temperature in continuous casting V [J]. ISIJ Int., 1984, 70: 118
[13] Miura R, Nisihara R, Tanaka H, et al. Tundish induction heater of No.2 continuous caster at Yawata works [J]. ISIJ Int., 1995, 81: T30
[14] Yang B, Lei H, Bi Q, et al. Electromagnetic conditions in a tundish with channel type induction heating [J]. Steel Res. Int., 2018, 89: 1800145
doi: 10.1002/srin.v89.10
[15] Yue Q, Pei X, Zhang C, et al. Magnetohydrodynamic calculation on double-loop channel induction tundish [J]. Arch. Metall. Mater., 2018, 63: 329
[16] Xing F, Zheng S G, Zhu M Y. Motion and removal of inclusions in new induction heating tundish [J]. Steel Res. Int., 2018, 89: 1700542
doi: 10.1002/srin.v89.6
[17] Wang Q, Li B K, Tsukihashi F. Modeling of a thermo-electromagneto-hydrodynamic problem in continuous casting tundish with channel type induction heating [J]. ISIJ Int., 2014, 54(2): 311
doi: 10.2355/isijinternational.54.311
[18] Tang H Y, Guo L Z, Wu G H, et al. Hydrodynamic modeling and mathematical simulation on flow field and inclusion removal in a seven-strand continuous casting tundish with channel type induction heating [J]. Metals, 2018, 8: 374
doi: 10.3390/met8060374
[19] Wu G H, Tang H Y, Xiao H, et al. Physical simulation on a 7-strand continuous casting tundish with channel type induction heating [J]. Iron Steel, 2017, 52(11): 20
[19] (吴光辉, 唐海燕, 肖 红等. 通道式感应加热7流中间包流场的物理模拟 [J]. 钢铁, 2017, 52(11): 20)
[20] Zhang S, Tang H Y, Liu J W, et al. Structural optimization of a six-strand H-type channel induction heating tundish [J]. J. Iron Steel Res., 2019, 31: 787
[20] (张 硕, 唐海燕, 刘锦文等. 六流H型通道感应加热中间包的结构优化 [J]. 钢铁研究学报, 2019, 31: 787)
[21] Tang H Y, Yu M, Li J S, et al. Numerical and physical simulation on inner structure optimization of a continuous casting tundish and its metallurgical effect [J]. J. Univ. Sci. Technol. Beijing, 2009, 31(S1): 38
[21] (唐海燕, 于 满, 李京社等. 连铸中间包内部结构优化的数理模拟及冶金效果 [J]. 北京科技大学学报, 2009, 31(S1): 38)
[22] Yang B, Deng A Y, Wang E G. Simulating the magnetic field/transfer phenomenon of the tundish with channel type inducting heating [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2018, 424: 012060
doi: 10.1088/1757-899X/424/1/012060
[23] Yue Q, Zhang C B, Pei X H. Magnetohydrodynamic flows and heat transfer in a twin-channel induction heating tundish [J]. Ironmak. Steelmak., 2017, 44: 227
doi: 10.1080/03019233.2016.1209919
[24] Liu H P. State of the art of numerical simulation of magneto-hydro dynamics in the continuous casting process [J]. Contin. Cast., 2015, (1): 7
doi: 10.13228/j.boyuan.issn1005-4006.20150012
[24] (刘和平. 连铸过程中电磁流体力学的数值模拟现状及发展趋势 [J]. 连铸, 2015, (1): 7)
doi: 10.13228/j.boyuan.issn1005-4006.20150012
[25] Jiang G Z, Kong J Y, Li G F, et al. Numerical simulation and optimization of flow field in tundish [J]. China Metall., 2008, 18(2): 46
[25] (蒋国璋, 孔建益, 李公法等. 中间包流场的数值模拟及其优化 [J]. 中国冶金, 2008, 18(2): 46)
[26] Xing F, Zheng S G, Liu Z H, et al. Flow field, temperature field, and inclusion removal in a new induction heating tundish with bent channels [J]. Metals, 2019, 9: 561
doi: 10.3390/met9050561
[27] Shi Z M, E J Q, Liu C Y, et al. Numerical simulation of flow phenomena and optimum operation of tundish [J]. J. Cent. South Univ. Technol., 2003, 10: 155
doi: 10.1007/s11771-003-0059-x
[28] Wen Y M, Han Y S, Liu Q, et al. Optimization of multi-fields coupled molten steel behavior in bloom continuous casting [J]. Iron Steel, 2018, 53(6): 53
[28] (文艳梅, 韩延申, 刘 青等. 大方坯结晶器内的多物理场模拟优化 [J]. 钢铁, 2018, 53(6): 53)
[29] Han L H, Yu C M, Qu M L. Numerical simulation of flow and temperature fields in electroslag remelting process [J]. Res. Exp. Lab., 2018, 37(1): 47
[29] (韩丽辉, 于春梅, 曲明磊. 电渣重熔过程流场和温度场的数值模拟 [J]. 实验室研究与探索, 2018, 37(1): 47)
[30] Vives C, Ricou R. Magnetohydrodynamic flows in a channel-induction furnace [J]. Metall. Trans., 1991, 22B: 193
[1] 高晗, 刘力, 周笑宇, 周心怡, 蔡汶君, 周泓伶. Ti6Al4V表面微纳结构的制备及生物活性[J]. 金属学报, 2023, 59(11): 1466-1474.
[2] 唐海燕, 刘锦文, 王凯民, 肖红, 李爱武, 张家泉. 连铸中间包加热技术及其冶金功能研究进展[J]. 金属学报, 2021, 57(10): 1229-1245.
[3] 王富强, 刘伟, 王兆文. 铝电解槽中局部阴极电流增大对电解质-铝液两相流场的影响[J]. 金属学报, 2020, 56(7): 1047-1056.
[4] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
[5] 何明, 李显亮, 王情伟, 王连钰, 王强. 磁屏蔽对电磁出钢系统中感应加热电源功率损耗的影响[J]. 金属学报, 2019, 55(2): 249-257.
[6] 范同祥, 刘悦, 杨昆明, 宋健, 张荻. 碳/金属复合材料界面结构优化及界面作用机制的研究进展[J]. 金属学报, 2019, 55(1): 16-32.
[7] 帅三三, 林鑫, 肖武泉, 余建波, 王江, 任忠鸣. 横向静磁场对激光熔化增材制造Al-12%Si合金凝固组织的影响[J]. 金属学报, 2018, 54(6): 918-926.
[8] 刘新华, 付华栋, 何兴群, 付新彤, 江燕青, 谢建新. Cu-Al复合材料连铸直接成形数值模拟研究[J]. 金属学报, 2018, 54(3): 470-484.
[9] 种晓宇, 汪广驰, 杜军, 蒋业华, 冯晶. ZTAp/HCCI复合材料凝固过程中的温度场和热应力的数值模拟[J]. 金属学报, 2018, 54(2): 314-324.
[10] 刘承林, 苏海军, 张军, 黄太文, 刘林, 傅恒志. 电磁场对镍基单晶高温合金组织的影响[J]. 金属学报, 2018, 54(10): 1428-1434.
[11] 韩林原, 李旋, 储成林, 白晶, 薛烽. 流场环境中AZ31镁合金的腐蚀行为研究[J]. 金属学报, 2017, 53(10): 1347-1356.
[12] 徐斌,胡庆贤,陈树君,蒋凡,王晓丽. K-PAW准稳态过程小孔与熔池动态行为的数值模拟*[J]. 金属学报, 2016, 52(7): 804-810.
[13] 陈亚东, 郑运荣, 冯强. 基于微观组织演变的DZ125定向凝固高压涡轮叶片服役温度场的评估方法研究*[J]. 金属学报, 2016, 52(12): 1545-1556.
[14] 黄军,张永杰,王宝峰,张亚坤,叶鑫,周士凯. 连铸中间包全尺度物理模拟平台建立及应用研究*[J]. 金属学报, 2016, 52(11): 1484-1490.
[15] 薛鹏, 张星星, 吴利辉, 马宗义. 搅拌摩擦焊接与加工研究进展*[J]. 金属学报, 2016, 52(10): 1222-1238.