Please wait a minute...
金属学报  2013, Vol. 49 Issue (6): 649-657    DOI: 10.3724/SP.J.1037.2012.00680
  论文 本期目录 | 过刊浏览 |
Zr55Cu33Al10Ni5块体非晶合金退火处理后脉冲激重熔晶化行为
杨高林,林鑫,胡桥,张莹,汪志太,李鹏,黄卫东
西北工业大学凝固技术国家重点实验室, 西安 710072
CRYSTALLIZATION BEHAVIOR OF ANNEALED Zr55Cu30Al10Ni5 BULK METALLIC GLASS  DURING PULSED LASER REMELTING
YANG Gaolin, LIN Xin, HU Qiao, ZHANG Ying, WANG Zhitai, LI Peng, HUANG Weidong
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
引用本文:

杨高林,林鑫,胡桥,张莹,汪志太,李鹏,黄卫东. Zr55Cu33Al10Ni5块体非晶合金退火处理后脉冲激重熔晶化行为[J]. 金属学报, 2013, 49(6): 649-657.
YANG Gaolin, LIN Xin, HU Qiao, ZHANG Ying, WANG Zhitai, LI Peng, HUANG Weidong. CRYSTALLIZATION BEHAVIOR OF ANNEALED Zr55Cu30Al10Ni5 BULK METALLIC GLASS  DURING PULSED LASER REMELTING[J]. Acta Metall Sin, 2013, 49(6): 649-657.

全文: PDF(5809 KB)  
摘要: 

Cu模铸造得到的Zr55Cu30Al10Ni5块体非晶合金分别在390, 430, 530, 792和902℃进行退火处理,并采用脉冲激光对其进行重熔, 研究基材晶化特征对熔池及热影响区晶化行为的影响.结果表明, 未晶化的退火处理试样(经390和430℃退火处理)在激光重熔后, 热影响区的晶化特征不受初始退火处理温度的影响.完全晶化的退火处理试样(经530, 792和902℃退火处理)在激光重熔后, 熔池基本上保持了非晶状态.经530和792℃退火处理后试样的熔池底部没有发现外延生长现象. 经902℃退火处理的试样在激光重熔后,单次激光重熔的熔池底部有少量的外延生长, 而经11次激光重熔的熔池底部无外延生长. 分析表明,外延生长是因为CuZr2初生相在重熔过程中在熔池底部产生了成分保留区域.由于熔池内非晶合金的扩散缓慢, 在激光重熔Zr55Cu30Al10Ni5非晶合金过程中,熔池底部即使是晶态也难以产生外延生长, 所以激光加工Zr55Cu30Al10Ni5非晶合金时,熔池内很容易保持非晶状态.

关键词 Zr55Cu30Al10Ni5块体非晶合金退火处理激光外延生长    
Abstract

The crystallization behavior of annealed metallic glasses during pulsed laser remelting was investigated in this work. The as-casted Zr55Cu30Al10Ni5 bulk metallic glasses were annealed at 390, 430, 530, 792 and 902℃ separately. And then these annealed alloys were remelted by pulsed laser. The experiment results show that the alloys annealed at 390 and 430℃ were still metallic glasses, and their crystallization behavior during remelting is similar to the remelting of metallic glass without annealing treatment. The specimens annealed at 530, 792 and 902℃ were completely crystallized. After remelting, the molten pools of these specimens were amorphous. For the specimens annealed at 530 and 792℃, there was no obvious epitaxial growth at the bottom of molten pools. For the specimens annealed at 902℃, there was little primary phase epitaxial growth at bottom of molten pool after one time laser remelting while without epitaxial growth after 11 times laser remelting. The epitaxial growth was caused by the area reserved the composition distribution of CuZr2 primary phase during laser remelting. So it is hard to obtain epitaxial growth during laser remelting for Zr55Cu30Al10Ni5m bulk metallic glasses even it has a crystallization substrate because of the slow diffusion. So it is easy to keep molten pool as amorphous state during laser treating Zr55Cu30Al10Ni5 bulk metallic glasses.

Key wordsZr55Cu30Al10Ni5 bulk metallic glass    annealing, laser    epitaxial growth
收稿日期: 2012-11-13     
基金资助:

国家自然科学基金项目50971102, 国家重点基础研究发展计划项目2011CB610402和高等学校博士学科点专项科研基金项目20116102110016

作者简介: 杨高林, 男, 1980年生, 博士生

[1] Byrne C J, Eldrup M. Science, 2008; 321: 502

[2] Zhang Q S, Zhang H F, Wang A M, Ding B Z, Hu Z Q. Acta Metall Sin, 2002; 38: 835
 (张庆生, 张海峰, 王爱民, 丁炳哲, 胡壮麒. 金属学报, 2002; 38: 835)
[3] Wang C, Zhang Q S, Jiang F, Zhang H F, Hu Z Q. Acta Metall Sin, 2002; 38: 765
 (王成, 张庆生, 江峰, 张海峰, 胡壮麒. 金属学报, 2002; 38: 765)
[4] Shen J, Wang G, Sun J F, Chen D M, Xing D W, Zhou B D.   Acta Metall Sin, 2004; 40: 518
 (沈军, 王刚, 孙剑飞, 陈德民, 邢大伟, 周彼德. 金属学报, 2004; 40: 518)
[5] Inoue A, Takeuchi A. Acta Mater, 2011; 59: 2243
[6] Inoue A, Nishiyama N. MRS Bull, 2007; 32: 651
[7] Gilman J J. Science, 1980; 208: 856
[8] Wang H S, Chen H G, Jang J S C, Chiou M S. Mater Sci Eng, 2010; A528: 338
[9] Kumagai N, Samata Y, Kawashima A, Asami K, Hashimoto K. J Non-Cryst Solids, 1987; 93: 78
[10] Li B, Li Z Y, Xiong J G, Xing L, Wang D, Li Y. J Alloys Compd, 2006; 413: 118
[11] Yue T M, Su Y P, Yang H O. Mater Lett, 2007; 61: 209
[12] Ma F X, Yang J J, Zhu X N, Liang C Y, Wang H S. Appl Surf Sci, 2010; 256: 3653
[13] Otsu M, Ide Y, Sakurai J, Hata S, Takashima K.   J Solid Mech Mater Eng, 2009; 3: 387
[14] Zheng B, Zhou Y, Smugeresky J E, Lavernia E J. Metall Mater Trans, 2009; 40A: 2009
[15] Yang G L, Lin X, Liu F C, Hu Q, Ma L, Li J F, Wei D H. Intermetallics, 2012; 22: 110
[16] Zhong M L, Liu W J, Yao K F, Ren J L, Hu S Q, Zhao H. Acta Metall Sin, 1997; 33: 413
 (钟敏霖, 刘文今, 姚可夫, 任家烈, 胡姝嬙, 赵宏. 金属学报, 1997; 33: 413)
[17] Basu A, Samant A N, Harimkar S P, Majumdar J D, Manna I, Dahotre N B. Surf Coat Technol,2008; 202: 2623
[18] Sun H, Flores K M. Metall Mater Trans, 2010; 41A: 1752
[19] Sun H, Flores K M. J Mater Res, 2008; 202: 2623
[20] Liu H J, Chen W R, Wang Y M, Wang D H, Li D J, Dong C. Acta Metall Sin, 2003; 39: 938
 (刘海军, 陈伟荣, 王英敏, 王德和, 李德俊, 董闯. 金属学报, 2003; 39: 938)
[21] Baker H. ASM Handbook. Materials Parks, OH: ASM International, 1993: 2
[22] Liu B B, Liu B Y, Fang X S, Zhang L Q, Ye F, Chen G L. J Alloys Compd, 2010; 504: 208
[23] Liu Z X, Huang W D.   Chin J Lasers, 2004; 31: 491
 (刘振侠, 黄卫东. 中国激光, 2004; 31: 491)
[24] Liu F C, Lin X, Huang C P, Song M H, Yang G L, Chen J, Huang W D. J Alloys Compd,2011; 509: 4505
[25] Cao Y Q, Lin X, Wang Z T, Yang H O, Huang W D. Acta Metall Sin, 2011; 5: 540
 (曹永青, 林鑫, 汪志太, 杨海欧, 黄卫东. 金属学报, 2011; 5: 540)
[26] Shen J, Zou J, Ye L, Lu Z P, Xing D W, Yan M, Sun J F. J Non-Cryst Solids, 2005; 351: 2519
[27] Li M, Kuribayashi K. Metall Mater Trans, 2003; 34A: 2999
[28] Xing L Q, Chen X C, Yang G C, Zhou Y H, Guo Z Q. Acta Metall Sin, 1991; 27: 255
(邢力谦, 陈熙琛, 杨根仓, 周尧和, 郭振琪. 金属学报, 1991; 27: 255)
[29] Hofmann D C, Suh J Y, Wiest A, Duan G, Lind M, Demetriou M D, Johnson W L. Nature, 2008; 451: 1085
[1] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[2] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[3] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[4] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[5] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[6] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[7] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[8] 王孟, 杨永强, Trofimov Vyacheslav, 宋长辉, 周瀚翔, 王迪. 粉末粒径对AlSi10Mg合金选区激光熔化成形的影响[J]. 金属学报, 2023, 59(1): 147-156.
[9] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[10] 祝国梁, 孔德成, 周文哲, 贺戬, 董安平, 疏达, 孙宝德. 选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展[J]. 金属学报, 2023, 59(1): 16-30.
[11] 陈斐, 邱鹏程, 刘洋, 孙兵兵, 赵海生, 沈强. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能[J]. 金属学报, 2023, 59(1): 180-190.
[12] 宋波, 张金良, 章媛洁, 胡凯, 方儒轩, 姜鑫, 张莘茹, 吴祖胜, 史玉升. 金属激光增材制造材料设计研究进展[J]. 金属学报, 2023, 59(1): 1-15.
[13] 方远志, 戴国庆, 郭艳华, 孙中刚, 刘红兵, 袁秦峰. 激光摆动对激光熔化沉积钛合金微观组织及力学性能的影响[J]. 金属学报, 2023, 59(1): 136-146.
[14] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[15] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.