Please wait a minute...
金属学报  2013, Vol. 49 Issue (5): 569-575    DOI: 10.3724/SP.J.1037.2012.00666
  论文 本期目录 | 过刊浏览 |
Cu和Ni低碳高强度钢等时回火析出富Cu相的研究
余锡模1,2),赵世金1, 2)
1) 上海大学材料研究所, 上海 200072
2) 上海大学微结构重点实验室, 上海 200444
STUDY ON Cu PRECIPITATE OF THE LOW C HIGH STRENGTH STEEL CONTAINING Cu AND Ni DURING ISOCHRONAL TEMPERING
YU Ximo1, 2), ZHAO Shijin1, 2)
1) Institute of Materials Science, Shanghai University, Shanghai 200072
2) Key Laboratory for Microstructures, Shanghai University, Shanghai 200444
引用本文:

余锡模,赵世金. 含Cu和Ni低碳高强度钢等时回火析出富Cu相的研究[J]. 金属学报, 2013, 49(5): 569-575.
YU Ximo, ZHAO Shijin. STUDY ON Cu PRECIPITATE OF THE LOW C HIGH STRENGTH STEEL CONTAINING Cu AND Ni DURING ISOCHRONAL TEMPERING[J]. Acta Metall Sin, 2013, 49(5): 569-575.

全文: PDF(2789 KB)  
摘要: 

用显微硬度计、HRTEM和三维原子探针(3DAP)对含Cu和Ni低碳高强度钢等时回火析出的富Cu相进行了研究.结果表明: 回火过程中,基体发生软化, 富Cu相析出, 板条状马氏体逐渐转变成多边形状铁素体; 在500 ℃时富Cu相强化作用达到最大值; 设置不同的Cu等浓度值时, 在400-500 ℃富Cu相的数量变化幅度大, 在500-650 ℃富Cu相的数量基本不变; 在晶界处发生C, Mo, P和Cu的偏聚; 晶界处Cu浓度高于基体, 为富Cu相的形核和长大提供了有利条件; 在析出的富Cu相与基体的过渡层上发生Ni, Mn和Al的偏聚, 这些偏聚元素与富Cu相核心共同形成核-壳结构.

关键词 Cu相3DAP硬度偏聚HRTEM    
Abstract

Cu precipitation strengthening plays an important role in the fabrication of high-strength low-alloy (HSLA) steels. The nature of Cu precipitation and the actual distributional morphology of Cu precipitates have a significant effect or directly determine the strength and toughness of HSLA steels. HSLA steel is weldable without preheat by reducing C to a low concentration. To compensate for the decrease of strength caused by reducing C, Cu was added to HSLA steel for precipitation strengthening by nanoscale Cu precipitates. The size, number density and composition of Cu nanophases could be well characterized by the atom probe tomography (APT), and the Cu nanophases obtained by APT analysis are usually termed Cu clusters. In the study, the specimens were austenitized for 30 min at 900 ℃followed by water quenching, and tempered isochronally for 60 min at different temperatures. The hardness was conducted, the microstructure and Cu precipitate were analyzed by HRTEM and APT. During tempering, Cu precipitation happened, Cu precipitate Moire fringe formed and the Cu precipitate transformed to fcc structure; the lath boundary gradually bulged out and migrated, a repeat of bulging and migration of local parts of lath boundary resulted in migration of the whole boundary, and lath martensite transformed to equiaxed ferrite finally. At 500℃, the strengthening peaked by Cu precipitates. During 400-500℃, the number of Cu clusters changed greatly when the Cu isoconcentration set at different values, this indicated that the Cu precipitates  were on the stage of nucleation; while the number of Cu clusters changed little during 500-650 ℃, this indicated that the Cu precipitates were on the stage of coarsening. The Cu, C, Mo and P segregated at the grain boundary. The boundary could provide Cu solutes and nucleation sites for Cu precipitation, leading to the segregation of Cu clusters at the grain boundary. The Ni, Mn and Al segregated at the heterophase interface between Cu precipitate and ferrite matrix forming a core-shell structure.

Key wordsCu precipitate    3DAP    hardness    segregation    HRTEM
收稿日期: 2012-11-07     
基金资助:

国家自然科学基金重点项目50931003, 上海市浦江计划项目10PJ1403900和曙光计划项目09SG36资助

作者简介: 余锡模, 男, 1987年生, 硕士生

[1] Dhua S K, Mukerjee D, Sarma D S.  Metall Mater Trans, 2001; 32A: 2259


[2] Vaynman S, Isheim D, Kolli R P, Bhat S P, Seidman D N, Fine M E.  Metall Mater Trans, 2008; 39A: 363

[3] Isheim D, Kolli R P, Fine M E, Seidman D N.  Scr Mater, 2006; 55: 35

[4] Panwar S, Goel D B, Pandey O P, Prasad K S.  Bull Mater Sci, 2006; 29: 281

[5] Panwar S, Goel D B, Pandey O P, Prasad K S.  Bull Mater Sci, 2003; 26: 441

[6] Ghosh A, Das S, Chatterjee S.  Mater Sci Eng, 2008; A486: 152

[7] Zhang Z W, Liu C T, Wen Y R, Hirata A, Guo S, Chen G, Chen M W, Chin B A.  Metall Mater Trans, 2012; 43A: 351

[8] Yong Q L.  Secondary Phase in Steel. Beijing: Metallurgical Industry Press, 2006: 127

(雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 127)

[9] Thompson S W, Krauss G.  Metall Mater Trans, 1996; 27A: 1573

[10] Xu G, Cai L L, Feng L, Zhou B X, Liu W Q, Wang J A.  Acta Metall Sin, 2012; 48 407

(徐刚, 蔡琳玲, 冯柳, 周邦新, 刘文庆, 王均安. 金属学报, 2012; 48: 407)

[11] Xu G, Cai L L, Feng L, Zhou B X, Liu W Q, Wang J A.  Acta Metall Sin, 2012; 48: 789

(徐刚, 蔡琳玲, 冯柳, 周邦新, 刘文庆, 王均安. 金属学报, 2012; 48: 789)

[12] Li H, Xia S, Zhou B X, Liu W Q.  Mater Charact, 2012; 66: 68

[13] Chu D F, Xu G, Wang W, Peng J C, Wang J A, Zhou B X.  Acta Metall Sin, 2011; 47: 269

(楚大峰, 徐刚, 王伟, 彭建超, 王均安, 周邦新. 金属学报, 2011; 47: 269)

[14] Xu G, Chu D F, Cai L L, Zhou B X, Wang W, Peng J C.  Acta Metall Sin, 2011; 47: 905

(徐刚, 楚大峰, 蔡琳玲, 周邦新, 王伟, 彭建超. 金属学报, 2011; 47: 905)

[15] Othen P J, Jenkins M L, Smith G D W.  Philos Mag, 1994; 70A: 1

[16] Monzen R, Jenkins M L, Sutton A P.  Philos Mag, 2000; 80A: 711

[17] Monzen R, Iguchi M, Jenkins M L.  Philos Mag Lett, 2000; 80: 137

[18] Hardouin D H A, Doole R C, Jenkins M L, Barbu A.  Phil Mag Lett, 1995; 71: 325

[19] Kolli R P, Seidman D N.  Acta Mater, 2008; 56: 2073

[20] Zhang C, Enomoto M.  Acta Mater, 2006; 54: 4183

[21] Worrall G M, Buswell J T, English C A, Hetherington M G, Smith G D W.  J Nucl Mater, 1987; 148: 107

[22] Liu Q D, Zhao S J.  Metall Mater Trans, 2013; 44A: 163

[23] Liu Q D, Liu W Q.  J Mater Res, 2012; 27: 1060

[24] Liu Q D, Zhao S J.  MRS Commun, 2012; 2: 127

[25] Sawada K, Taneike M, Kimura K, Abe F.  Mater Sci Technol, 2003; 19: 739

[26] Ghasemi Banadkouki S S, Yu D, Dunne D P.  ISIJ Int, 1996; 36: 61

[27] Miglin M T, Hirth J P, Rosenfield A P, Clark W A T.  Metall Trans, 1986; 17A: 791

[28] Zhou B X, Wang J A, Liu Q D, Liu W Q, Wang W, Lin M D, Xu G, Chu D F.  Mater China, 2011; 30: 1

(周邦新, 王均安, 刘庆冬, 刘文庆, 王伟, 林民东, 徐刚, 楚大峰. 中国材料进展, 2011; 30: 1)

[29] Kolli R P, Mao Z, Seidman D N.  Appl Phys Lett, 2007; 91: 241903

[30] Isheim D, Gagliano M S, Fine M E, Seidman D N.  Acta Mater, 2006; 54: 841

[31] Xu Z, Zhao L C.  Solid--state Phase Transformation of Metals. Beijing: Science Press, 2004: 126

(徐洲, 赵连城. 金属固态相变原理. 北京: 科学出版社, 2004: 126)

[1] 段慧超, 王春阳, 叶恒强, 杜奎. 纳米多孔金属表面结构与成分的三维电子层析表征[J]. 金属学报, 2023, 59(10): 1291-1298.
[2] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
[3] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[4] 王韬, 龙弟均, 余黎明, 刘永长, 李会军, 王祖敏. 超高压烧结制备14Cr-ODS钢及微观组织与力学性能[J]. 金属学报, 2022, 58(2): 184-192.
[5] 项兆龙, 张林, XIN Yan, 安佰灵, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, 王恩刚. Cr含量对FeCrCoSi永磁合金调幅分解组织及其性能的影响[J]. 金属学报, 2022, 58(1): 103-113.
[6] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[7] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[8] 童文辉, 张新元, 李为轩, 刘玉坤, 李岩, 国旭明. 激光工艺参数对TiC增强钴基合金激光熔覆层组织及性能的影响[J]. 金属学报, 2020, 56(9): 1265-1274.
[9] 张林, 郭晓, 高建文, 邓安元, 王恩刚. 电磁搅拌对TiB2颗粒增强钢组织和力学性能的影响[J]. 金属学报, 2020, 56(9): 1239-1246.
[10] 盖逸冰, 唐法威, 侯超, 吕皓, 宋晓艳. 合金化元素对W-Cu体系多类界面特征影响的第一性原理计算[J]. 金属学报, 2020, 56(7): 1036-1046.
[11] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
[12] 刘艳梅, 王铁钢, 郭玉垚, 柯培玲, 蒙德强, 张纪福. Ti-B-N纳米复合涂层的设计、制备及性能[J]. 金属学报, 2020, 56(11): 1521-1529.
[13] 刘海霞, 陈金豪, 陈杰, 刘光磊. NaCl溶液腐蚀后304不锈钢的射流空蚀特征[J]. 金属学报, 2020, 56(10): 1377-1385.
[14] 吕超然, 徐乐, 史超, 刘进德, 蒋伟斌, 王毛球. Al42CrMo螺栓钢淬透性及组织的影响[J]. 金属学报, 2020, 56(10): 1324-1334.
[15] 杜瑜宾, 胡小锋, 张守清, 宋元元, 姜海昌, 戎利建. 1.4%CuHSLA钢的组织和力学性能[J]. 金属学报, 2020, 56(10): 1343-1354.