Please wait a minute...
金属学报  2013, Vol. 49 Issue (3): 284-290    DOI: 10.3724/SP.J.1037.2012.00553
  论文 本期目录 | 过刊浏览 |
铝合金压铸件微观孔洞三维特征及分布的研究
万谦,赵海东,邹纯
华南理工大学国家金属材料近净成形工程技术研究中心, 广州 510640
THREE-DIMENSIONAL CHARACTERIZATION ANDDISTRIBUTION OF MICROPORES IN ALUMINUMALLOY HIGH PRESSURE DIE CASTINGS
WAN Qian, ZHAO Haidong, ZOU Chun
National Engineering Research Center of Near-net-shape Forming for Metallic Materials, South China University of,Technology, Guangzhou 510640
引用本文:

万谦,赵海东,邹纯. 铝合金压铸件微观孔洞三维特征及分布的研究[J]. 金属学报, 2013, 49(3): 284-290.
WAN Qian, ZHAO Haidong, ZOU Chun. THREE-DIMENSIONAL CHARACTERIZATION ANDDISTRIBUTION OF MICROPORES IN ALUMINUMALLOY HIGH PRESSURE DIE CASTINGS[J]. Acta Metall Sin, 2013, 49(3): 284-290.

全文: PDF(676 KB)  
摘要: 

基于高精度三维X射线断层扫描技术, 对实际ADC12铝合金压铸件试样内部的微观孔洞进行了观察, 测量和计算了孔洞的体积、表面积、圆整度等特征参数, 分析了微观孔洞体积的总体特征. 根据孔洞的三维形貌和特征参数, 对气孔、气缩孔和缩孔3类微观孔洞的体积、圆整度和压力进行了分析与对比,探讨了各类孔洞的形成机制. 研究表明, 气孔、气缩孔和缩孔空间形貌复杂性增加, 而圆整度和压力下降,气缩孔具有最大的平均体积, 缩孔具有最小的平均体积. 使用统计方法对微观孔洞的体积进行了分析, 结果表明, 微观孔洞的体积符合三参数对数正态分布, 其拟合程度优于二参数对数正态分布.

关键词 铝合金压铸微观孔洞三维X射线断层扫描    
Abstract

Aluminum alloy castings have been widely applied in automotive and aerospace fields. One of themost common defects of cast aluminum alloys is pore, which often results in poor mechanical properties suchas limited strength and ductility, short fatigue life and increasing variability in properties. In this investigation,micropores in practical ADC12 aluminum high pressure die castings were detected with 3D high resolution X-raycomputed tomography technology. The 3D morphologies, volumes, surface areas and sphericity coefficients ofthe pores were presented and analyzed. The pore's general characterization was summarized. Based on theirdifferent morphologies and characteristics, there were three types of pores, namely, gas, gas-shrinkage andshrinkage pores, detected in the die casting alloys. The volumes, sphericity coefficients and pressures of the threetypes of pores were compared and discussed. Then their formation mechanism was proposed. It was concludedthat the gas pore was with low volume, high pressure and near round shape. The appearance of shrinkage-gaspore was sphere with convexes or long tails. Compared with the gas pore, the shrinkage-gas pore volume washigher while its pressure was lower by one order of magnitude. For the shrinkage pore formed during the highsolid fraction period, it was characterized with low volume and tortuous and complex shape in space. The sphericity and pressure of the shrinkage pore were the lowest among the three types of pores and its pressure wasapproximate three orders lower than that of the gas pore. Furthermore, the volume distribution of pores wasinvestigated by statistical analysis, which showed that the three-parameter lognormal can fit the volume distribution better than lognormal.

Key wordsaluminum alloy    die casting, microporosity    3D X-ray tomography
收稿日期: 2012-09-17     
基金资助:

国家科技支撑计划项目2011BAE21B02, 教育部新世纪优秀人才支持计划项目NCET-08-0209和中央高校基本科研业务费项目

作者简介: 万谦, 男, 1990年生, 硕士生

[1] Campbell J.Castings. 2nd Ed., Oxford: Elsevier Butterworth-Heinemann, 2003: 178


[2] Tiryakioglu M, Campbell J, Staley J T.Scr Mater, 2003; 49: 873

[3] Li P, Lee P D, Maijer D M, Lindley T C.Acta Mater, 2009; 57: 3539

[4] Nyahumwa C, Green N R, Campbell J.Metall Mater Trans, 2001; 32A: 349

[5] Casellas D, Perez R, Prado J M.Mater Sci Eng, 2005; A398: 171

[6] Yi J Z, Gao Y X, Lee P D, Lindley T C.Metall Mater Trans, 2006; 37B: 301

[7] Lee S G, Gokhale A M, Patel G R, Evans M.Mater Sci Eng, 2006; A427: 99

[8] Lee S G, Gokhale A M.Scr Mater, 2007; 56: 501

[9] Hangai Y, Kuwazuru O, Yano T, Utsunomiya T, Murata Y, Kitahara S, Bidhar S, Yoshikawa N.

 Mater Trans, 2010; 51: 1574

[10] Nicoletto G, Konecna R, Fintova S.Int J Fatigue, 2012; 41: 39

[11] Felberbaum M.PhD Dissertation, Ecole Polytechnique Federale de Lausanne, 2010

[12] Felberbaum M, Rappaz M.Acta Mater, 2011; 59: 6849

[13] Zhao H D, Wang F, Li Y Y, Xia W.J Mater Proc Technol, 2009; 209: 4537

[14] Zhao H D, Bai Y F, Ouyang X X, Dong P Y.Trans Nonferrous Met Soc China, 2010; 20: 2064

[15] Nagasekhar A V, Caceres C H, Kong C.Mater Charact, 2010; 61: 1035

[16] Maire E, Grenier J C, Daniel D, Baldacci A, Klocker H, Bigot A.Scr Mater, 2006; 55: 123

[17] Kuwazuru O, Murata Y, Hangai Y, Utsunomiya T, Kitahara S, Yoshikawa N.J Solid Mech Mater Eng, 2008; 2: 1220

[18] Caty O, Buffiere J Y, Maire E, Adrien J.Adv Eng Mater, 2011; 13: 194

[19] Yi J Z, Gao Y X, Lee P D, Flower H M, Lindley T C.Metall Mater Trans, 2003; 34A: 1879

[20] Asta M, Beckermann C, Karma A, Kurz W, Napolitano R, Plapp M, Purdy G, Rappaz M, Trivedi R.Acta Mater, 2009; 57: 941

[21] Zhao H D, Wu C Z, Li Y Y.Inter J Cast Met Res, 2008; 21: 313

[22] Zhao H D, Wu C Z, Li Y Y, Ohnaka I.Acta Metall Sin, 2008; 44: 1340

(赵海东, 吴朝忠, 李元元, 大中逸雄. 金属学报, 2008; 44: 1340)

[23] Chen Z W.Mater Sci Eng, 2003; A348: 145

[24] Lee P D, Chirazi A, See D.J Light Met, 2001; 1: 15

[25] Tiryakioglu M.Mater Sci Eng, 2007; A465: 287

[26] Tiryakioglu M.Mater Sci Eng, 2009; A520: 114
[1] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[2] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[3] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[4] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[5] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[6] 王春辉, 杨光昱, 阿热达克·阿力玛斯, 李晓刚, 介万奇. 砂型3DP打印参数对ZL205A合金铸造性能的影响[J]. 金属学报, 2022, 58(7): 921-931.
[7] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[8] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[9] 孙宝德, 王俊, 康茂东, 汪东红, 董安平, 王飞, 高海燕, 王国祥, 杜大帆. 高温合金超限构件精密铸造技术及发展趋势[J]. 金属学报, 2022, 58(4): 412-427.
[10] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.
[11] 王冠杰, 李开旗, 彭力宇, 张壹铭, 周健, 孙志梅. 高通量自动流程集成计算与数据管理智能平台及其在合金设计中的应用[J]. 金属学报, 2022, 58(1): 75-88.
[12] 赵婉辰, 郑晨, 肖斌, 刘行, 刘璐, 余童昕, 刘艳洁, 董自强, 刘轶, 周策, 吴洪盛, 路宝坤. 基于Bayesian采样主动机器学习模型的6061铝合金成分精细优化[J]. 金属学报, 2021, 57(6): 797-810.
[13] 孙佳孝, 杨可, 王秋雨, 季珊林, 包晔峰, 潘杰. 5356铝合金TIG电弧增材制造组织与力学性能[J]. 金属学报, 2021, 57(5): 665-674.
[14] 刘日平, 马明臻, 张新宇. 块体非晶合金铸造成形的研究新进展[J]. 金属学报, 2021, 57(4): 515-528.
[15] 陈军洲, 吕良星, 甄良, 戴圣龙. AA 7055铝合金时效析出强化模型[J]. 金属学报, 2021, 57(3): 353-362.