Please wait a minute...
金属学报  2012, Vol. 48 Issue (5): 579-586    DOI: 10.3724/SP.J.1037.2012.00087
  论文 本期目录 | 过刊浏览 |
NiCrAlY/Al--Al2O3/Ti2AlNb高温抗氧化和力学性能研究
李海庆1,2,宫骏2,孙超2
1. 中国运载火箭技术研究院航天材料及工艺研究所, 北京 100076
2. 中国科学院金属研究所金属腐蚀与防护国家重点实验室, 沈阳 110016
HIGH TEMPERATURE OXIDATION RESISTANCE AND MECHANICAL PROPERTIES OF NiCrAlY/Al--Al2O3 COATINGS ON AN ORTHORHOMBIC Ti2AlNb ALLOY
LI Haiqing1,2, GONG Jun2, SUN Chao2
1. Aerospace Research Institute of Materials and Processing Technology, China Academy of Launch Vehicle Technology,Beijing 100076
2. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences,
引用本文:

李海庆,宫骏,孙超. NiCrAlY/Al--Al2O3/Ti2AlNb高温抗氧化和力学性能研究[J]. 金属学报, 2012, 48(5): 579-586.

全文: PDF(2832 KB)  
摘要: 采用电弧离子镀技术在NiCrAlY涂层与O相Ti2AlNb合金之间沉积不同Al∶Al2O3比例的 Al--Al2O3薄膜作为扩散阻挡层. 研究了900 ℃下恒温氧化500 h后NiCrAlY/Al--Al2O3/Ti2AlNb 体系中Al--Al2O3层阻挡合金元素互扩散的行为, 以及对涂层氧化动力学曲线的影响. 结果表明, 没有添加扩散阻挡层的NiCrAlY/Ti2AlNb体系, 涂层和基体之间的元素互扩散十分严重, 涂层丧失抗氧化能力;而添加扩散阻挡层的材料体系, 涂层和基体之间的元素互扩散受到抑制, 涂层的长期抗高温氧化性能得到提高. 对于3Al--Al2O3, 1Al--Al2O3和0Al--Al2O3~3种扩散阻挡层, 综合比较材料体系的抗氧化性能、阻挡层阻挡涂层和基体元素互扩散能力、以及涂层和基体之间结合力, 当1Al--Al2O3薄膜作为扩散阻挡层时, 材料性能最优异. 同时, 本文利用扩散阻挡系数简洁定量地表示出不同Al∶Al2O3比例阻挡层的阻挡扩散能力.
关键词 涂层扩散阻挡层氧化互扩散O相Ti2AlNb合金    
Abstract:The orthorhombic Ti2AlNb alloys have received significant attentions because of their good physical and mechanical properties. However, these orthorhombic alloys face problems of oxidation at high temperature, especially above 700 ℃. To solve these problems, the use of surface coatings is an efficient way. However, when single coating was applied on the orthorhombic Ti2AlNb alloys, problems of serious interdiffusion and interfacial reaction were encountered, which resulted in worse oxidation behavior and deteriorated mechanical properties. To obtain good oxidation protection of NiCrAlY coating on the orthorhombic Ti2AlNb alloy, an efficient diffusion barrier should be added. In this study, NiCrAlY/Al--Al2O3 double--coatings were deposited on the orthhombic--Ti2AlNb alloy by arc ion plating. NiCrAlY coating acted as oxidation resistance coating and Al--Al2O3 coating acted as diffusion barrier. By introducing metallic Al in the Al2O3 film, the problem of coefficient of thermal expansion (CTE) mismatch between film and alloy substrate might be mitigate. Also metallic Al in the Al2O3 film can act as diffusion path which permits proper interdiffusion to improve the interface adhesion. The oxidation and interdiffusion behavior of specimens with and without diffusion barriers were investigated by oxidation tests at 900 ℃. The results indicated that substantial interdiffusion and rapid oxidation degradation occurred in the coated specimens without diffusion barrier. With Al--Al2O3 diffusion barriers, deferred interdiffusion and improved oxidation resistance were observed. Different contents of metallic Al in the Al2O3 coatings had different efficiency of diffusion barrier, and also affected interfacial mechanical properties. Among these NiCrAlY/Al--Al2O3 coatings, double--coating containing 1Al--Al2O3 diffusion barrier exhibited best performance. Coefficient of diffusion hindering was used to compare and quantify the efficiency of the diffusion barriers.
Key wordscoating    diffusion barrier    oxidation    interdiffusion    O-Ti2AlNb alloy
收稿日期: 2012-02-22     
基金资助:

国家自然科学基金资助项目50701046

作者简介: 李海庆, 男, 1982年生, 工程师, 博士
[1] Leyens C, Peters M.  Titanium and Titanium Alloys. Weinheim: Wiley--VCH, 2003; 52

[2] Kumpfert J.  Adv Eng Mater, 2001; 3: 851

[3] Ralison A, Dettenwanger F, Schutze M.  Mater High Temp, 2003; 20: 607

[4] Christoph L.  Oxid Met, 1999; 52: 475

[5] Ralison A, Dettenwanger F, Schutze M.  Mater Corros, 2000; 51: 317

[6] Dudziak T, Du H L, Datta P K, Wilson A, Ross I M, Moser M, Braun R.  Corros Sci, 2009; 51: 1189

[7] Leyens C, Braun R, Frohlich M, Hovsepian P E.  JOM, 2006; 58: 17

[8] Cvijovic I, Jovanovic M T, Perusko D.  Corros Sci, 2008; 50: 1919

[9] Xiong Y M, Zhu S L, Wang F H.  Surf Coat Technol, 2005; 197: 322

[10] Braun R, Leyens C.  Mater High Temp, 2005; 22: 437

[11] Braun R, Frohlich M, Leyens C, Renusch D.  Oxid Met, 2009; 71: 295

[12] Tang Z L, Wang F H, Wu W T.  Surf Coat Technol, 1998; 110: 57

[13] Zhang K, Wang Q M, Sun C, Wang F H.  Corros Sci, 2007; 49: 3598

[14] Goward G W.  Surf Coat Technol, 1998; 108: 73

[15] Sivakumar R, Mordike B L.  Surf Coat Technol, 1989; 37: 139

[16] Wang Q M, Zhang K, Gong J, Cui Y Y, Sun C, Wen L S.  Acta Mater, 2007; 55: 1427

[17] Muller J, Schierling M, Zimmermann E, Neuschutz D. Surf Coat Technol, 1999; 120--121: 16

[18] Wang Q M, Wu Y N, Ke P L, Sun C, Huang R F, Wen L S.  Acta Metall Sin, 2004; 40: 83

     (王启民, 吴颖娜, 柯培玲, 孙超, 黄荣芳, 闻立时. 金属学报, 2004; 40: 83)

[19] Li H Q, Wang Q M, Jiang S M, Gong J, Sun C.  Corros Sci, 2010; 52: 1668

[20] Knotek O, Lugscheider E, Loffler F, Beele W.  Surf Coat Technol, 1994; 68--69: 22

[21] Yao Y, Li W Z, Wang Q M, Gong J, Sun C, Li J B.  Acta Metall Sin, 2008; 44: 876

     (姚勇, 李伟洲, 王启民, 宫骏, 孙 超, 李家宝. 金属学报, 2008; 44: 876)
 
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[3] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[4] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[5] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[6] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[7] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[8] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[9] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[10] 李斗, 徐长江, 李旭光, 李双明, 钟宏. La掺杂PCeyFe3CoSb12 热电材料及涂层的热电性能[J]. 金属学报, 2023, 59(2): 237-247.
[11] 李昕, 江河, 姚志浩, 董建新. O原子对高温合金基体NiCoNiCr晶界作用的理论计算分析[J]. 金属学报, 2023, 59(2): 309-318.
[12] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[13] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[14] 金鑫焱, 储双杰, 彭俊, 胡广魁. 露点对连续退火0.2%C-1.5%Si-2.5%Mn高强钢选择性氧化及脱碳的影响[J]. 金属学报, 2023, 59(10): 1324-1334.
[15] 胡敏, 周生玉, 国京元, 胡明昊, 李冲, 李会军, 王祖敏, 刘永长. 多相Ni3Al基高温合金微区氧化行为[J]. 金属学报, 2023, 59(10): 1346-1354.