Please wait a minute...
金属学报  2012, Vol. 48 Issue (8): 895-906    DOI: 10.3724/SP.J.1037.2012.00132
  论文 本期目录 | 过刊浏览 |
多向锻造和单向轧制304不锈钢高温退火后的晶界特征分布
方晓英1, 刘志勇1, Tikhonova M 2, Belyakov A2,Kaibyshev R 2, Rohrer G S 3, 王卫国1
1. 山东理工大学机械工程学院, 淄博 255049
2. Belgorod State University, Pobeda 85, Belgorod, 308015, Russia
3. Materials Science and Engineering Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
GRAIN BOUNDARY PLANE DISTRIBUTIONS IN 304 STEEL ANNEALED AT HIGH TEMPERATURE AFTER A PARALLEL PROCESSING OF MULTIPLE FORGING AND DIRECT ROLLING
FANG Xiaoying 1, LIU Zhiyong 1, Tikhonova M 2, Belyakov A 2, Kaibyshev R 2, Rohrer G S 3,WANG Weiguo 1
1. School of Mechanical Engineering, Shandong University of Technology, Zibo 255049
2. Belgorod State University, Pobeda 85, Belgorod, 308015, Russia
3. Materials Science and Engineering Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
引用本文:

方晓英 刘志勇 Tikhonova M Belyakov A Kaibyshev R Rohrer G S 王卫国. 多向锻造和单向轧制304不锈钢高温退火后的晶界特征分布[J]. 金属学报, 2012, 48(8): 895-906.

全文: PDF(10008 KB)  
摘要: 

固溶处理后的2组304不锈钢样品分别经应变量ε=2的多向锻造(MF)和单向轧制(DR)后,再经900 ℃高温退火2-120 min. 采用电子背散射衍射(EBSD)技术和五参数晶界面分析方法(FPA), 研究了样品的晶界特征分布(GBCD)和晶界面分布(GBPD).结果表明, 2组样品中Σ3n(n=1, 2, 3)特殊晶界的比例均不超过45%,并且在退火过程中, 非共格Σ3晶界逐渐共格化, Σ9和Σ27晶界比例也随之下降. 分别经MF和DR处理后再经120 min退火的样品中,一般大角度晶界(过滤掉Σ3n)一般均以<111>扭转晶界和<110>倾侧晶界为主, 表明样品中均存在明显的晶界织构 (GBT);在某些特定取向差条件下, 一般大角度晶界的GBPD在样品中存在显著差异,表明退火之前的加工过程对304不锈钢的GBPD有显著影响.

关键词 304不锈钢晶界特征分布晶界面分布晶界织构    
Abstract

It is well–recognized that low Σ-CSL boundaries are highly populated in the grain boundary character distribution (GBCD) for austenitic stainless steel (SS) processed by low strain and subsequent annealing. However, large–strain plus annealing typically tends to introducing numerous random high angle grain boundaries (RHABs) instead of producing high fraction of  Σ3, Σ9 and Σ27 boundaries. In this case, the distribution of grain boundary planes of RHABs must be very relevant to the properties of material. The current study is to explore the evolution of GBCD and grain boundary plane distribution (GBPD) in 304 austenitic SS after large strain and subsequent annealing using electron backscatter diffraction (EBSD) and five–parameter analysis (FPA). After solid solution  treatment, 304 steel samples were separately processed by multiple forging (MF) and direct rolling (DR) with true strain ε=2 followed by same annealing at 900℃ for 2—120 min. Then the GBCDs and GBPDs of the two groups of samples were examined. The results show that the total Σ3n (n=1, 2, 3) special boundaries in any sample as processed take a length fraction of lower than 45% out of the entire boundaries, and with annealing proceeding the incoherent Σ3 boundaries tend to be tuned into coherent ones and consequently the summation fractions of Σ9 and Σ27 boundaries decrease accordingly. In the two samples which were separately processed by MF and DR but followed by the same annealing at 900℃ for 120 min, their random boundaries or general high angle boundaries (Σ3n special boundaries filtered) mostly appeare to be the <111>  twist and <110>  tilt boundaries, indicating there exist grain boundary textures (GBT) in both samples. However, in the condition of some misorientations, the GBPDs of random boundaries are quite different in the two samples. For grain boundaries of <111>/30—40? misorientation, more grain boundaries of twist type nearly on the exact {111} plane are found in the specimen processed by DR and annealing for 120 min (DR120) compared to that processed by MF and annealing for 120 min (MF120). For the grain boundaries of <110>/50? misorientation, it was found that most of such boundaries in MF120 are tilt type and positioned on {112}, {113} and {115} planes, whereas those in DR120 are tilt or mixed type positioned on {001}, {111} and {012}. It was suggested that there are distinct effects of pre–processing on the GBPDs of annealed 304 steel.

Key words304 stainless steel    grain boundary character distribution    grain boundary plane distribution    grain boundary texture
收稿日期: 2012-03-13     
基金资助:

国家自然科学基金项目50974147和51111120089以及山东省自然科学基金项目2009ZRB01176资助

作者简介: 方晓英, 女, 1971年生, 博士

[1] Shimada M, Kokawa H, Wang Z J, Saro Y S, Karibe I.Acta Mater, 2002; 50: 2331



[2] Lin P, Palumbo G, Erb U, Aust K T. Scr Metall Mater,1995; 33: 1387



[3] Yin Y F, Faulkner R G. Mater Sci Technol, 1997; 21: 123



[4] Watanabe T. Res Mech, 1984; 11: 47



[5] Palumbo G, Lehoceky E M, Lin P. JOM, 1998; 50: 40



[6] Trillo E, Murr L. J Mater Sci, 1998; 33: 1263



[7] Fang X Y, Wang W G, Guo H, Zhang X, Zhou B X. J Iron Steel Res, 2007; 14: 339



[8] Randle V. Scr Mater, 2006; 54: 1011



[9] Poulsen H F, Nielsen S F, Lauridsen E M, Schmidt S, Suter R M, Lienert U, Margulies L, Lorentzen T, Juul J D. J Appl Cryst, 2001; 34: 751



[10] Fu X, Poulsen H F, Schmidt S, Nielsen S F, Lauridsen E M, Juul J D. Scr Mater, 2003; 49: 1093



[11] Groeber M, Ghosh S, Uchic M D, Dimiduk D M. Acta Mater, 2008; 56: 1257



[12] Brahme A, Alvi M H, Saylor D, Fridy J, Rollett A D. Scr Mater, 2006; 55: 75



[13] Rohrer G S, Saylor D M, Dasher B E, Adams B L, Rollett A D, Wynblatt P. J Mater Res, 2004; 95: 197



[14] Saylor D M, Dasher B E, Adams B L, Rohrer G S. Metall Mater Trans, 2004; 35A: 1981



[15] Rohrer G S, Randle V, Kim C S, Hu Y. Acta Mater, 2006; 54: 4489



[16] Kim C S, Hu Y, Rohrer G S , Randle V. Scr Mater, 2005; 52: 633



[17] Saylor D M, Morawiec A, Rohrer G S. Acta Mater, 2003; 51: 3675



[18] Saylor D M, Dasher B E, Sano T, Rohrer G S. J Am Ceram Soc, 2004; 87: 670



[19] Fang X Y,Wang WG, Rohrer G S, Zhou B X. Acta Metall Sin, 2010; 46: 404



(方晓英, 王卫国, Rohrer G S, 周邦新. 金属学报, 2007; 46: 404)



[20] Cai Z X, Wang W G, Fang X Y, Guo H. Acta Metall Sin, 2010; 46: 769



(蔡正旭, 王卫国, 方晓英, 郭红. 金属学报, 2010; 46: 769)



[21] Wang W G, Zhou B X, Rohrer G S, Guo H, Cai Z X. Mater Sci Eng, 2010; A527: 3695



[22] Fang X Y, Wang W G, Guo H, Zhang X, Zhou B X. Acta Metall Sin, 2007; 43: 1239



(方晓英, 王卫国, 郭红, 张欣, 周邦新. 金属学报, 2007; 43: 1239)



[23] Wang W G. Chin J Stereol Image Analy, 2007; 12: 239



(王卫国. 中国体视学与图像分析, 2007; 12: 239)



[24] Randle V, Jones R. Mater Sci Forum, 2010; 638–642:196



[25] Brandon D G. Acta Metall, 1966; 14: 1479



[26] Thomson C B, Randle V. Acta Mater, 1997; 45: 4909



[27] Wang W G, Dai Y, Li J H, Liu B X. Cryst Growth Des, 2011; 11: 2928



[28] Fang X Y, Zhang K, Guo H, Wang W G, Zhou B X. Mater Sci Eng, 2008; A487: 7



[29] Fang X Y, Wang W G, Cai Z X, Qin C X, Zhou B X. Mater Sci Eng, 2010; A527: 1571



[30] Wen Y N, Zhang J M. Solid State Commun, 2007; 144: 163



[31] Hu G X, Cai X, Rong Y H. Fundamental of Materials Science. Shanghai: Shanghai Jiaotong University Press, 2010: 122



(胡赓祥, 蔡旬,戎咏华. 材料科学基础. 上海: 上海交通大学出版社, 2010: 122)

[1] 刘海霞, 陈金豪, 陈杰, 刘光磊. NaCl溶液腐蚀后304不锈钢的射流空蚀特征[J]. 金属学报, 2020, 56(10): 1377-1385.
[2] 李鑫,董月成,淡振华,常辉,方志刚,郭艳华. 等通道角挤压制备超细晶纯Ti的腐蚀性能研究[J]. 金属学报, 2019, 55(8): 967-975.
[3] 张清东,李硕,张勃洋,谢璐,李瑞. 金属轧制复合过程微观变形行为的分子动力学建模及研究[J]. 金属学报, 2019, 55(7): 919-927.
[4] 陈吉湘,王卫国,林燕,林琛,王乾廷,戴品强. 等径角挤压和单向轧制高纯Al再结晶晶界面的取向分布*[J]. 金属学报, 2016, 52(4): 473-483.
[5] 赵清,夏爽,周邦新,白琴,苏诚,王宝顺,蔡志刚. 形变及热处理对825合金管材晶界特征分布的影响*[J]. 金属学报, 2015, 51(12): 1465-1471.
[6] 马广财, 付华萌, 王峥, 徐庆亮, 张海峰. 304不锈钢毛细管/Zr53.5Cu26.5Ni5Al12Ag3块体非晶合金复合材料的制备与性能研究[J]. 金属学报, 2014, 50(9): 1087-1094.
[7] 朱传琳,张俊宝,程从前,赵杰. 变形温度对冷喷涂304不锈钢涂层材料高温变形行为的影响[J]. 金属学报, 2013, 49(10): 1275-1280.
[8] 杜楠 田文明 赵晴 陈四兵. 304不锈钢在3.5\%NaCl溶液中的点蚀动力学及机理[J]. 金属学报, 2012, 48(7): 807-814.
[9] 胡长亮 夏爽 李慧 刘廷光 周邦新 陈文觉. 晶界网络特征对304不锈钢晶间应力腐蚀开裂的影响[J]. 金属学报, 2011, 47(7): 939-945.
[10] 蔡正旭 王卫国 方晓英 郭红. 晶粒尺寸对冷轧退火纯Cu晶界特征分布的影响[J]. 金属学报, 2010, 46(7): 769-774.
[11] 方晓英 王卫国 Rohrer G S 周邦新. 冷轧退火后铁素体不锈钢的晶界面分布[J]. 金属学报, 2010, 46(4): 404-410.
[12] 程晓娟 王弘 康国政 董亚伟 刘宇杰. 304不锈钢棘轮变形过程中应变诱发马氏体相变行为研究[J]. 金属学报, 2009, 45(7): 830-834.
[13] 张坤; 王卫国; 方晓英; 郭红 . 不同温度轧制Pb--Ca--Sn--Al合金高温退火后的晶界特征分布[J]. 金属学报, 2008, 44(6): 652-658 .
[14] 张欣; 王卫国; 郭红; 姜英 . 固溶和预时效Pb合金冷轧退火晶界特征分布[J]. 金属学报, 2007, 43(5): 454-458 .
[15] 梁高飞; 朱丽业; 王成全; P.Nolli; 吴建春; 于艳 ; 方园 . AISI304不锈钢中δ→γ相变的原位观察[J]. 金属学报, 2007, 43(2): 119-124 .