Please wait a minute...
金属学报  2012, Vol. 48 Issue (6): 661-670    DOI: 10.3724/SP.J.1037.2011.00769
  论文 本期目录 | 过刊浏览 |
镍基高温合金γ'相析出的经典动态模型及应用
石宇野1,焦少阳1,2,董建新1,张麦仓1
1. 北京科技大学材料科学与工程学院, 北京 100083
2. 中国核电工程有限公司, 北京 100840
CLASSICAL PRECIPITATION DYNAMIC MODEL OF γ' PHASE OF NICKEL--BASED SUPER ALLOYS AND APPLICATIONS
SHI Yuye1, JIAO Shaoyang1,2, DONG Jianxin1, ZHANG Maicang1
1. School of Materials Science and Engineering, University of Science  and Technology Beijing, Beijing 100083
2. China Nuclear Power Engineering Co. Ltd., Beijing 100840
全文: PDF(6177 KB)  
摘要: 基于经典形核理论, 考虑温度和保温时间对沉淀相析出的影响, 建立了镍基高温合金中γ'沉淀相析出模型. 同时结合GH738合金在等温时效实验条件下获得的 γ'相析出特征值数据, 验证模拟计算结果的相对正确性. 结果表明, 沉淀相析出过程经典动态模型可较好预测多元复杂镍基合金体系γ'相以均匀形核为主的析出过程. 进一步利用该模型对GH80A, GH738, U720Li和DD407共计4种典型高温合金计算分析了Al和Ti含量及其比值变化对γ'相析出行为的影响. 结果表明, 对于γ'相平衡态含量, Al的作用程度比Ti大; 而在Al+Ti总量不变的前提下, Ti含量增加将对提高γ'相的析出驱动力, 从而减少完全析出时间有较大的贡献; Ti含量的增加也将使得沉淀相在析出初期的数量增加, 而尺寸减小.
关键词 经典形核理论高温合金沉淀相模拟计算    
Abstract:Based on the classical nucleation theory, and considering the effects of heat temperature and preservation time on precipitation, the γ' precipitation model in nickel-based superalloy was established. In combination with the characteristic value data of γ' precipitation which was got by isothermal aging experiment of GH738 alloy, the relative accuracy of simulation result was verified. Results show that the classic dynamic model of the precipitation can better forecast that γ' phase of multiple complex nickel--based alloy system mainly precipitate by uniform nucleation. Further, precipitation model was combined with four typical superalloys GH80A, GH738, U720Li and DD407. The effects of the contents of Al, Ti and its ratio change on the precipitation of γ' were calculated and analyzed. Results showed that the better role of Al than Ti on equilibrium content. Under the premise of equal amount of Al + Ti, the increasing of Ti had a greater contribution to the driving force of precipitation and complete precipitation time, and increased the volume fraction of the beginning of precipitation, but reduced the size of precipitated phase.
Key wordsclassical nucleation theory    super alloy, precipitate    simulation
收稿日期: 2011-12-07     
ZTFLH: 

TG132.3

 
基金资助:

国家自然科学基金资助项目 51071017

通讯作者: 董建新     E-mail: jxdong@ustb.edu.cn
作者简介: 石宇野, 男, 1986年生, 硕士生

引用本文:

石宇野,焦少阳,董建新,张麦仓. 镍基高温合金γ'相析出的经典动态模型及应用[J]. 金属学报, 2012, 48(6): 661-670.
DAN Yu-Shu, QIAO Shao-Yang, DONG Jian-Xin, ZHANG Mai-Cang. CLASSICAL PRECIPITATION DYNAMIC MODEL OF γ' PHASE OF NICKEL--BASED SUPER ALLOYS AND APPLICATIONS. Acta Metall Sin, 2012, 48(6): 661-670.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2011.00769      或      https://www.ams.org.cn/CN/Y2012/V48/I6/661

[1] Wang Y, Banerjee D, Su C C.  Acta Mater, 1998; 46: 2983

[2] Wang G, Du D S, Ma N.  Acta Mater, 2009; 57: 316

[3] Gale W F, Nemani R V, Horton J A.  J Mater Sci, 1996; 31: 1681

[4] Mao J.  PhD Thesis, West Virginia University, Morgantown, 2002

[5] Booth-Morrison C, Weninger J, Sudbrack C K, Mao Z, Noebe R D,Seidman D N.  Acta Mater, 2008; 56: 3422

[6] Kelekanjeri S K, Gerhardt R A.  Electrochim Acta, 2006; 51: 1873

[7] Yao Z H, Dong J X, Zhang M C, Yu Q Y.  Trans Mater Heat Treat,2011; 32(10): 43

    (姚志浩, 董建新, 张麦仓, 于秋颖. 材料热处理学报, 2011; 32(10): 43)

[8] Oja M, Chandran K S, Tryon R G.  Int J Fatigue, 2010; 32: 551

[9] Moat R J, Pinkerton A J, Li L, Withers P J, Preuss M.  Acta Mater,2009; 57: 1220

[10] Wisniewski A, Beddoes J.  Mater Sci Eng, 2009; A510: 266

[11] Wang Y, Sun F, Dong X P, Zhang L T, Shan A D.  Acta Metall Sin,2010; 46: 334

     (王衣, 孙峰, 董显平, 张澜庭, 单爱党. 金属学报, 2010; 46: 334)

[12] Wang M G, Tian S G, Yu X F, Qian B J.  Rare Met Mater Eng,2010; 39: 268

 (王明罡, 田素贵, 于兴福, 钱本江. 稀有金属材料与工程, 2010; 39: 268)

[13] Zhu T, Wang C Y, Gan Y.  Acta Phys Sin, 2009; 58: 156

     (朱弢,王崇愚, 干勇. 物理学报, 2009; 58: 156)

[14] Wen Y H, Zhu T, Cao L X, Wang C Y.  Acta Phys Sin, 2003; 52: 2520

     (文玉华, 朱弢,曹立霞, 王崇愚. 物理学报, 2003; 52: 2520)

[15] Lifshitz I M, Slyozov V V.  J Phys Chem Sol, 1961; 19: 35

[16] Wagner C.  Z Elektrochem, 1961; 65: 581

[17] Wang X D, Wang Q, Jiang J Z.  J Alloys Compd, 2007; 440: 189

[18] Hong C M, Dong J X, Zhang Y F, Zhang M C, Zheng L.  Rare Met Mater Eng, 2009; 38: 510

     (洪成淼, 董建新, 张玉峰, 张麦仓, 郑磊. 稀有金属材料与工程, 2009; 38: 510)

[19] Song X P, Li H Y, Gai J F, Chen G L.  Acta Metall Sin,2005; 41: 1233

     (宋西平, 李红宇, 盖靖峰, 陈国良. 金属学报, 2005; 41: 1233)
[1] 刘金来, 叶荔华, 周亦胄, 李金国, 孙晓峰. 一种单晶高温合金的弹性性能的各向异性[J]. 金属学报, 2020, 56(6): 855-862.
[2] 马德新,王富,徐维台,徐文梁,赵运兴. 高温合金单晶铸件中条纹晶的形成机制[J]. 金属学报, 2020, 56(3): 301-310.
[3] 赵旭,孙元,侯星宇,张洪宇,周亦胄,丁雨田. 取向偏差对镍基单晶高温合金钎焊接头组织与力学性能的影响[J]. 金属学报, 2020, 56(2): 171-181.
[4] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
[5] 刘兴军, 陈悦超, 卢勇, 韩佳甲, 许伟伟, 郭毅慧, 于金鑫, 魏振帮, 王翠萍. 新型钴基高温合金多尺度设计的研究现状与展望[J]. 金属学报, 2020, 56(1): 1-20.
[6] 吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
[7] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[8] 杜金辉,吕旭东,董建新,孙文儒,毕中南,赵光普,邓群,崔传勇,马惠萍,张北江. 国内变形高温合金研制进展[J]. 金属学报, 2019, 55(9): 1115-1132.
[9] 毕中南,秦海龙,董志国,王相平,王鸣,刘永泉,杜金辉,张继. 高温合金盘锻件制备过程残余应力的演化规律及机制[J]. 金属学报, 2019, 55(9): 1160-1174.
[10] 胡斌,李树索,裴延玲,宫声凯,徐惠彬. <111>取向小角偏离对一种镍基单晶高温合金蠕变性能的影响[J]. 金属学报, 2019, 55(9): 1204-1210.
[11] 张北江,黄烁,张文云,田强,陈石富. 变形高温合金盘材及其制备技术研究进展[J]. 金属学报, 2019, 55(9): 1095-1114.
[12] 张国庆,张义文,郑亮,彭子超. 航空发动机用粉末高温合金及制备技术研究进展[J]. 金属学报, 2019, 55(9): 1133-1144.
[13] 李嘉荣,谢洪吉,韩梅,刘世忠. 第二代单晶高温合金高周疲劳行为研究[J]. 金属学报, 2019, 55(9): 1195-1203.
[14] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[15] 江河,董建新,张麦仓,姚志浩,杨静. 服役条件下镍基高温合金应力松弛微观机制[J]. 金属学报, 2019, 55(9): 1211-1220.