Please wait a minute...
金属学报  2012, Vol. 48 Issue (2): 129-134    DOI: 10.3724/SP.J.1037.2011.00755
  论文 本期目录 | 过刊浏览 |
AZ21镁合金降温多向压缩过程中的组织和微观织构演化
杨续跃1,2,孙欢1,吴新星1,马继军1,秦佳1,霍庆欢1
1. 中南大学材料科学与工程学院, 长沙 410083
2. 中南大学有色金属材料科学与工程教育部重点实验室, 长沙 410083
EVOLUTIONS OF MICROSTRUCTURE AND MICROTEXTURE IN AZ21 Mg ALLOY DURING MULTI–DIRECTIONAL FORGING UNDER DECREASING TEMPERATURE CONDITIONS
YANG Xuyue 1,2, SUN Huan 1, WU Xinxing 1, MA Jijun 1, QIN Jia 1, HUO Qinghuan 1
1. School of Materials Science and Engineering, Central South University, Changsha 410083
2. Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083
引用本文:

杨续跃 孙欢 吴新星 马继军 秦佳 霍庆欢. AZ21镁合金降温多向压缩过程中的组织和微观织构演化[J]. 金属学报, 2012, 48(2): 129-134.
, , , , , . EVOLUTIONS OF MICROSTRUCTURE AND MICROTEXTURE IN AZ21 Mg ALLOY DURING MULTI–DIRECTIONAL FORGING UNDER DECREASING TEMPERATURE CONDITIONS[J]. Acta Metall Sin, 2012, 48(2): 129-134.

全文: PDF(923 KB)  
摘要: 对AZ21镁合金进行了降温多向压缩变形, 利用OM及SEM/EBSD技术观察和分析了其显微组织和微观织构的演化. 结果表明, 随着变形道次的增加,晶粒尺寸迅速减小, 经4道次的变形晶粒可细化至0.8 μm.高温变形时生成的相互交叉的扭折带可将原始晶粒有效地分割而细化.673 K第1道次变形至ε=1.2时, 几乎所有的晶粒都发生了90°的转动, 基面由变形前平行于压缩方向转至与压缩方向垂直,基面织构强度先减小后增大; 第2道次变形时, 织构变化与第1道次基本一样,表现为与变形温度无关, 仅取决于变形程度. 第2道次变形后织构强度低于第1道次,变形道次的增加可以弱化织构.
关键词 镁合金 降温多向压缩 晶粒细化 扭折带 微观织构演化    
Abstract:Grain refinement and texture evolution of a magnesium alloy AZ21 were investigated during multi–directional forging under decreasing temperature from 673 K to 433 K. Dynamic recrystallization (DRX) and texture development were studied at 673 K by OM and SEM/EBSD techniques. The flow curves show rapid hardening accompanied by a stress peak at relatively low strains, followed by strain softening and then a steady state flow stress at high strains. Kink bands with low to medium angle misorientations are evolved at corrugated grain boundaries and also frequently in grain interiors at low strains. Some of them intersect with each other, leading to the fragmentation of original grains. The alignment of the basal planes initially parallel to the compression axis rotated gradually by compression at 673 K and approached an orientation perpendicular to the compression axis at ε=1.2. The relative intensity of texture decreases rapidly with increasing strain to ε=0.4 and goes up later. A similar trend of texture evolution is recognized for the second pass, implying slightly effect of temperature but rather of strain. It is also concluded that increasing the deformation passes can lead to a decrease in texture intensity.
Key wordsmagnesium alloy    multi-directional forging under decreasing temperature    grain refinement    kink band    microtexture evolution
收稿日期: 2011-12-05     
ZTFLH: 

TG146.2

 
基金资助:

国家自然科学基金资助项目 51071182

作者简介: 杨续跃, 男, 1959年生, 教授
[1] Perez–Prado M T, Valle J A, Contreras J M, Ruano O A. Scr Mater, 2004; 50: 661

[2] Robert G, Matthias M F, Gunter G. Mater Sci Eng, 2005; A395: 338

[3] Chino Y, Mabuchi M. Adv Eng Mater, 2001; 3: 981

[4] Akihiro Y, Zenji H, Terence G. Mater Sci Eng, 2001; A300: 142

[5] Kim H K, Kim W J. Mater Sci Eng, 2004; A385: 300

[6] Chang H, Zheng M Y, Wu K, Gan W M, Tong L B, Brokmeier H G. Mater Sci Eng, 2010; A527: 7176

[7] Li X, Al–Samman T, Gottstein G. Mater Lett, 2011; 65: 1907

[8] Kim W J, Park J D, Wang J Y, Yoon W S. Scr Mater, 2007; 57: 755

[9] Xing J, Sohde H, Yang X Y, Miura H, Sakai T. Mater Trans, 2005; 46: 1646

[10] Xin Y C, Wang M Y, Zeng Z, Huang G J, Liu Q. Scr Mater, 2011; 64: 986

[11] Stanford N, Barnett M R. Scr Mater, 2008; 58: 179

[12] Xing J, Yang X Y, Miura H, Sakai T. Mater Trans, 2008; 49: 69

[13] Miura H, Yu G, Yang X Y. Mater Sci Eng, 2011; A528: 6981

[14] Somjeet B, Satyam S. Scr Mater, 2012; 66: 89

[15] Miukai T, Yamanoi M, Watanabe H, Higashi K. Scr Mater, 2001; 45: 89

[16] Miura H, Yang X Y, Sakai T, Nogawa H, Watanabe Y, Miura S, Jonas J J. Philos Mag, 2005; 85: 3553

[17] Foley D C, Al–Maharbi M, Hartwig K T, Karaman I, Kecskes L J, Mathaudhu S N. Scr Mater, 2011; 64: 193

[18] Sakai T, Jonas J J. Acta Metall, 1984; 32: 189

[19] Gourdet S, Montheillet F. Acta Mater, 2003; 51: 2685

[20] Yang X Y, Ji Z S, Miura H, Sakai T. Trans Nonferrous Met Soc China, 2009; 19: 55

[21] Li X, Yang P, Wang L N, Meng L, Cui F. Mater Sci Eng, 2009; A517: 160

[22] Yang X Y, Miuna H, Sakai T. Mater Trans, 2003; 44: 197

[23] Yang X Y, Jiang Y P. Acta Metall Sin, 2010; 46: 451

(杨续跃, 姜育培. 金属学报, 2010; 46: 451)

[24] Al–Samman T, Gottstein G. Mater Sci Eng, 2008; A490: 411

[25] Wu X X, Yang X Y, Zhang L, Zhang Z L. Acta Metall Sin, 2011; 47: 140

(吴新星, 杨续跃, 张雷, 张之岭. 金属学报, 2011; 47: 140)

[26] Barnett M R, Keshavarz Z, Beer A G, Atwell D. Acta Mater, 2004; 52: 5093

[27] Wu S K, Chou T S, Wang J Y. Mater Sci Forum, 2003; 419–422: 527

[28] Tanno Y, Mukai T, Asakawa M. Mater Sci Forum, 2003; 419–422: 359

[29] Yoshida Y, Cisar L, Kamado S, Kojimo Y. Mater Trans, 2003; 44: 468
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[3] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[4] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[5] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[6] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[7] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[8] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
[9] 吴国华, 童鑫, 蒋锐, 丁文江. 铸造Mg-RE合金晶粒细化行为研究现状与展望[J]. 金属学报, 2022, 58(4): 385-399.
[10] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[11] 罗旋, 韩芳, 黄天林, 吴桂林, 黄晓旭. 层状异构Mg-3Gd合金的微观组织和力学性能[J]. 金属学报, 2022, 58(11): 1489-1496.
[12] 李少杰, 金剑锋, 宋宇豪, 王明涛, 唐帅, 宗亚平, 秦高梧. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织[J]. 金属学报, 2022, 58(1): 114-128.
[13] 丁宁, 王云峰, 刘轲, 朱训明, 李淑波, 杜文博. 高应变速率多向锻造Mg-8Gd-1Er-0.5Zr合金的微观组织、织构及力学性能[J]. 金属学报, 2021, 57(8): 1000-1008.
[14] 王慧远, 夏楠, 布如宇, 王珵, 查敏, 杨治政. 低合金化高性能变形镁合金研究现状及展望[J]. 金属学报, 2021, 57(11): 1429-1437.
[15] 潘复生, 蒋斌. 镁合金塑性加工技术发展及应用[J]. 金属学报, 2021, 57(11): 1362-1379.