Please wait a minute...
金属学报  2011, Vol. 47 Issue (12): 1581-1590    DOI: 10.3724/SP.J.1037.2011.00522
  论文 本期目录 | 过刊浏览 |
GH738高温合金热变形过程显微组织控制与预测 I.组织演化模型的构建
姚志浩,董建新,张麦仓
北京科技大学材料科学与工程学院, 北京 100083
MICROSTRUCTURE CONTROL AND PREDICTION OF GH738 SUPERALLOY DURING HOT DEFORMATION
I. Construction of Microstructure Evolution Model
YAO Zhihao, DONG Jianxin, ZHANG Maicang
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
引用本文:

姚志浩 董建新 张麦仓. GH738高温合金热变形过程显微组织控制与预测 I.组织演化模型的构建[J]. 金属学报, 2011, 47(12): 1581-1590.
, , . MICROSTRUCTURE CONTROL AND PREDICTION OF GH738 SUPERALLOY DURING HOT DEFORMATION
I. Construction of Microstructure Evolution Model[J]. Acta Metall Sin, 2011, 47(12): 1581-1590.

全文: PDF(1069 KB)  
摘要: 采用Gleeble-1500热模拟机对GH738镍基高温合金进行了高温热压缩变形实验, 分析了该合金在初始晶粒不同的情况下, 变形温度1000-1160 ℃,应变速率0.01-10 s-1, 工程变形量15%-70%条件下流变应力的变化规律及晶粒组织演化规律; 同时研究了变形温度1040-1120 ℃,应变速率0.1-10 s-1, 变形量15%-50%, 保温时间0-45 s条件下该合金的亚动态(静态)再结晶及保温温度980-1140 ℃, 保温时间0-4 h条件下的晶粒长大行为. 通过系统的物理热模拟实验, 构建了GH738高温合金在热变形过程中的晶粒组织演化模型及应力-应变模型, 所建立的GH738高温合金模型与实验结果相比均表现出较高的相关度.
关键词 GH738镍基变形高温合金 热变形 再结晶行为 组织演变 模型    
Abstract:The hot deformation behavior of GH738 superalloy with different initial grain sizes was studied using hot compression experiments via Gleeble–1500. Correlations between flow stress, process parameters and microstructure evolution were characterized in the temperature range of 1000—1160 ℃, strain rate range of 0.01—10 s−1 and engineering strain range of 15%—70%. Besides, metadynamic recrystallization and static recrystallization were studied in the temperature range of 1040—1120 ℃, strain rate range of 0.1—10 s−1 and engineering strain range of 15%—50% with soaking time for 0—45 s; grain growth behavior was researched in the temperature range 980—1140  with soaking time for 0—4 h. The results show that recrystallization behavior of GH738 superalloy was significantly affected by initial grain size, deformation temperature, strain and strain rate. Thermomechanical behavior and microstructural evolution models were systematically constructed based on the investigation of dynamic recrystallization, meta–dynamic recrystallization, static recrystallization and grain growth. The analyses indicate that these models shows a high correlation with actual results of GH738 superalloy.
Key wordsGH738 wrought nickel base superalloy    hot deformation    recrystallization behavior    crostructure evolution    model
收稿日期: 2011-08-11     
基金资助:

国家自然科学基金资助项目 51071017

作者简介: 姚志浩, 男, 满族, 1982年生, 博士生
[1] Yao Z H, Dong J X, Zhang M C, Zheng L. Rare Met Mater Eng, 2010; 39: 1565

(姚志浩, 董建新, 张麦仓, 郑磊. 稀有金属材料与工程, 2010; 39: 1565)

[2] Chang K M, Liu X B. Mater Sci Eng, 2001; A308: 1

[3] Semiatin S L, Fagin P N, Glavicic M G. Scr Mater, 2004; 50: 625

[4] Liu X B, Kang B, Chang K M. Mater Sci Eng, 2003; A340: 8

[5] Yao Z H, Dong J X, Zhang M C, Yu Q Y, Zheng L. Trans Mater Heat Treat, 2011; 32: 44

(姚志浩, 董建新, 张麦仓, 于秋颖, 郑磊. 材料热处理学报, 2011; 32: 44)

[6] Donachie M J, Pinkowish A A, Danesi W P, Radavich J F, Couts W H. Metall Trans, 1970; 1: 2623

[7] Guimaraes A A, Jonas J J. Metall Trans, 1981; A12: 1655

[8] Livesey D W, Sellars C M. Mater Sci Technol, 1985; 1: 136

[9] Li M Q, Yao X Y, Luo J, Lin Y Y, Su S B, Wang H R. Acta Metall Sin, 2007; 43: 937

(李淼泉, 姚晓燕, 罗皎, 林莺莺, 苏少博, 王海荣. 金属学报, 2007; 43: 937)

[10] Salehi A R, Serajzadeh S, Yazdipour N.Mater Chem Phys, 2007; 101: 153

[11] Gao H, Barber G C, Chen Q A, Lu Y Q. J Mater Process Technol, 2003; 142: 52

[12] Ganapathysubramanian S, Zabaras N. Int J Solid Struct, 2004; 41: 2011

[13] Wang B X, Liu X H, Wang G D. Mater Sci Eng, 2005; A393: 102

[14] Sui F L, Xu L X, Chen L Q, Liu X H. J Mater Process Technol, 2011; 211: 433

[15] Zhao M L, Sun W R, Yang S L, Qi F, Guo S R, Hu Z Q. Acta Metall Sin, 2009; 45: 79

(赵美兰, 孙文儒, 杨树林, 祁峰, 郭守仁, 胡壮麒. 金属学报, 2009; 45: 79)

[16] Sellars C M, McTegart W J. Acta Metall, 1966; 14: 1136

[17] McQueen H J, Ryan N D. Mater Sci Eng, 2002; A322: 43

[18] Sommitsch C, Mitter W. Acta Metall, 2006; 54: 357

[19] Gottstein G, Frommert M, Goerdeler M, Schafer N. Mater Sci Eng, 2004; A387–389: 604

[20] Solhjoo S. Mater Des, 2010; 31: 1360

[21] Poliak E I, Jonas J J. ISIJ Int, 2003; 43: 692

[22] Li G, Maccagno T M, Bai D Q. ISIJ Int, 1996; 36: 1479

[23] Bai D Q, Yue S, Jonas J J. ISIJ Int, 1996; 36: 1084

[24] Shen B Z, Fang N W, Shen H F, Liu B C. Mater Sci Technol, 2005; 13: 516

(沈丙振, 方能炜, 沈厚发, 柳百成. 材料科学与工艺, 2005; 13: 516)

[25] Li G, Maccagno T M, Bai D Q. ISIJ Int, 1996; 36: 1479

[26] Sellars C M, Whiteman J A. Met Sci, 1979; 13: 187

[27] Anelli E. ISIJ Int, 1992; 32: 440
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[3] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[4] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[5] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[6] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[7] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[8] 张志东. 铁磁性三维Ising模型精确解及时间的自发产生[J]. 金属学报, 2023, 59(4): 489-501.
[9] 王凯, 晋玺, 焦志明, 乔珺威. CrFeNi中熵合金在宽温域拉伸条件下的力学行为与变形本构方程[J]. 金属学报, 2023, 59(2): 277-288.
[10] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[11] 居天华, 舒念, 何维, 丁学勇. 合金溶液中溶质间活度相互作用系数预测模型[J]. 金属学报, 2023, 59(11): 1533-1540.
[12] 王楠, 陈永楠, 赵秦阳, 武刚, 张震, 罗金恒. 应变速率对X80管线钢铁素体/贝氏体应变分配行为的影响[J]. 金属学报, 2023, 59(10): 1299-1310.
[13] 方远志, 戴国庆, 郭艳华, 孙中刚, 刘红兵, 袁秦峰. 激光摆动对激光熔化沉积钛合金微观组织及力学性能的影响[J]. 金属学报, 2023, 59(1): 136-146.
[14] 李钊, 江河, 王涛, 付书红, 张勇. GH2909低膨胀高温合金热处理中的组织演变行为[J]. 金属学报, 2022, 58(9): 1179-1188.
[15] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.