Please wait a minute...
金属学报  2011, Vol. 47 Issue (7): 784-789    DOI: 10.3724/SP.J.1037.2011.00312
  论文 本期目录 | 过刊浏览 |
流动加速腐蚀引起的管壁减薄分析及验证
Masanori Naitoh1),  陈耀东2), Shunsuke Uchida1),  Hidetoshi Okada1)
1) The Institute of Applied Energy, Tokyo 105-0003, Japan
2) 中国核电工程有限公司, 北京 100840
ANALYSIS AND VALIDATION OF PIPE WALL THINNING DUE TO FLOW ACCELERATED CORROSION
Masanori Naitoh1),  CHEN Yaodong2) , Shunsuke Uchida1),  Hidetoshi Okada1)
1) The Institute of Applied Energy, Tokyo 105-0003, Japan
2) China Nuclear Power Engineering Co. Ltd., Beijing 100840
引用本文:

Masanori Naitoh 陈耀东 Shunsuke Uchida Hidetoshi Okada. 流动加速腐蚀引起的管壁减薄分析及验证[J]. 金属学报, 2011, 47(7): 784-789.
. ANALYSIS AND VALIDATION OF PIPE WALL THINNING DUE TO FLOW ACCELERATED CORROSION[J]. Acta Metall Sin, 2011, 47(7): 784-789.

全文: PDF(2222 KB)  
摘要: 针对危害电站安全运行的流动加速腐蚀(FAC)现象, 结合专用分析程序包DRAWTHREE的模型和结构, 阐明了FAC的发生机理及其决定性因素, 提出了用于评估FAC和管壁减薄速率的方法和步骤, 并将上述程序分析结果与实验及电厂实际测量数据进行了比较, 结果吻合较好. 最后给出了用于缓解FAC的一些措施.
关键词 流动加速腐蚀管壁减薄电化学双氧化层评价程序DRAWTHREE    
Abstract:Flow accelerated corrosion (FAC) is one of phenomena which are challenging safety operation of power plant. The mechanism and dominant factor contributing to its ocurrence are illustrated. In parrallel, a dedicated FAC simulation code package, DRAWTHREE, its physical models and structure, as well as methodology and procedure for FAC and wall thinning evaluation are introduced. The code is then applied to the simulation of FAC and prediction of wall thinning rate, and the simulated results agree well with experimental and plant measured data. Finally, some countermeasures against FAC for different types of power plant are proposed.
Key wordsflow accelerated corrosion (FAC)    wall thinning    electrochemistry    double oxide layer    evaluation program DRAWTHREE
收稿日期: 2011-05-17     
作者简介: Masanori Naitoh, 男, 日本, 1945年生, 高级研究员
[1] Nuclear and Industrial Safety Agency. Secondary Piping Rupture Accident at Mihama Power Station, Unit 3 of the Kansai Electric Power Co., Inc. (Final report), Rev.1, Nuclear and Industrial Safety Agency: Tokyo, Japan, 2005: 1

[2] Czajkowski C Z. Metallurgical Evaluation of an 18 inch Feedwater Line Failure at the Surry Unit 2 Power Station, NUREG/CR–4868, BNL–NUREG–52057, Brookhaven National Laboratory, 1987: 1

[3] Uchida S, Naitoh M, Uehara Y, Okada H, Hiranuma N, Sugino W, Koshizuka S. Power Plant Chem, 2008; 11–12: 704

[4] Naitoh M, Uchida S, Koshizuka S, Ninokata H, Hiranuma N, Dosaki K, Nishida K, Akiyama M, Saitoh H. J Nucl Sci Technol, 2008; 45: 1116

[5] Uchida S, Naitoh M, Uehara Y, Okada H, Hiranuma N, Sugino W, Koshizuka S. J Nucl Sci Technol, 2008: 45: 1275

[6] Uchida S, Naitoh M, Uehara Y, Okada H, Hiranuma N, Sugino W, Koshizuka S, Lister D H. J Nucl Sci Technol, 2009; 46: 31

[7] Uchida S, Naito M, Uehara Y, Okada H, Koshizuka S, Lister D H. Proc 14th Int Conf Environmental Degradation of Materials in Nuclear Power Systems–Water Reactors, VA, Virginia Beach: ANS, 2009: 973

[8] Uchida S, Naitoh M, Uehara Y, Okada H, Ohira T, Takiguchi H, Sugino W, Koshizuka S. J Nucl Sci Technol, 2010; 47: 184

[9] Naitoh M, Uchida S, Uehara Y, Okada H, Koshizuka S. Proc ASME PVP2010, Bellevue, WA, USA, July 18–22, Paper PVP2010–25517, 2010: 887

[10] Tsuruta T, Murata K, Shoda Y, Yamamoto K. Proc Fontevraud 6 Contribution of Material Investigation to Improve the Safety and Performance of LWRs, Vol.1, session A, Fontevraud, France: French Nuclear Energy Society, 2006: 181

[11] Heitmann H G, Schub P. Proc Int Conf Water Chemistry of Nuclear Reactor Systems 3, Bournemouth, UK: British Nuclear Energy Society, 1983: 243

[12] Fujiwara K, Domae M, Ohira T, Hisamuna K, Takiguchi H, Uchida S, Lister D H. Proc 16th Pacific Basin Nuclear Conference, Paper ID P16, Aomori, Japan: Atomic Energy Society of Japan, 2008: 1048

[13] Uchida S, Naitoh M, Okada H, Taku O, Koshizuka S. Proc Int Conf Water Chemistry of Nuclear Reactor Systems, NPC 2010, Quebec, Canada, October 3–7, 2010, Paper 4.02

[14] Uchida S, Naitoh M, Okada H, Taku O, Koshizuka S, Lister D H. Power Plant Chem, 2010; 12: 550

[15] Naitoh M, Uchida S, Uehara Y. Proc ASME PVP2009, Praque, Czech Republic, July 26–30, Paper PVP2009– 77583, 2009: 887

[16] Naitoh M, Uchida S, Okada H, Taku O, Koshizuka S. Proc 8th Int Topical Mtg Nuclear Thermal–Hydraulics, Operation and Safety (NUTHOS–8), Shanghai, China, October 10–14, 2010, Paper N8P0060

[17] Dooley R B. Power Plant Chem, 2008; 10: 68

[18] Naitoh M, Uchida S, Uehara Y. Proc 7th Int Topical Mtg Nuclear Reactor Thermal Hydraulics, Operation and Safety, Seoul, Korea, October 5–9, 2008, Paper 178

[19] Atomic Energy Society of Japan. Handbook of Water Chemistry of Nuclear Reactor Systems. Corona Publishing Co.: Tokyo, Japan, 2000: 328
[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[3] 潘成成, 张翔, 杨帆, 夏大海, 何春年, 胡文彬. 三维石墨烯/Cu复合材料在模拟海水环境中的腐蚀和空蚀行为[J]. 金属学报, 2022, 58(5): 599-609.
[4] 程伟丽, 谷雄杰, 成世明, 陈宇航, 余晖, 王利飞, 王红霞, 李航. 镁空气电池阳极用挤压态Mg-2Bi-0.5Ca-0.5In合金的放电性能和电化学行为[J]. 金属学报, 2021, 57(5): 623-631.
[5] 黄一川, 王清, 张爽, 董闯, 吴爱民, 林国强. 用于燃料电池双极板的不锈钢成分优化[J]. 金属学报, 2021, 57(5): 651-664.
[6] 宋学鑫, 黄松鹏, 汪川, 王振尧. 碳钢在红沿河海洋工业大气环境中的初期腐蚀行为[J]. 金属学报, 2020, 56(10): 1355-1365.
[7] 马荣耀,王长罡,穆鑫,魏欣,赵林,董俊华,柯伟. 静水压力对超纯Fe腐蚀行为的影响[J]. 金属学报, 2019, 55(7): 859-874.
[8] 刘灿帅,田朝晖,张志明,王俭秋,韩恩厚. 地质处置低氧过渡期X65低碳钢腐蚀行为研究[J]. 金属学报, 2019, 55(7): 849-858.
[9] 白杨, 王振华, 李相波, 李焰. 低压冷喷涂制备Al(Y)-30%Al2O3涂层及其海水腐蚀行为[J]. 金属学报, 2019, 55(10): 1338-1348.
[10] 杨玉林, 穆张岩, 范铮, 淡振华, 王莹, 常辉. 电化学脱合金制备纳米多孔Ag及其甲醛检测性能[J]. 金属学报, 2019, 55(10): 1302-1310.
[11] 屈少鹏, 程柏璋, 董丽华, 尹衍升, 杨丽景. 2205钢在模拟深海热液区中的腐蚀行为[J]. 金属学报, 2018, 54(8): 1094-1104.
[12] 范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.
[13] 徐江, 鲍习科, 蒋书运. 纳米晶Ta2N涂层在模拟人体环境中的耐蚀性能研究[J]. 金属学报, 2018, 54(3): 443-456.
[14] 舒韵, 闫茂成, 魏英华, 刘福春, 韩恩厚, 柯伟. X80管线钢表面SRB生物膜特征及腐蚀行为[J]. 金属学报, 2018, 54(10): 1408-1416.
[15] 余军, 张德平, 潘若生, 董泽华. 井下含硫环空液中P110油管钢应力腐蚀开裂的电化学噪声特征[J]. 金属学报, 2018, 54(10): 1399-1407.