Please wait a minute...
金属学报  2010, Vol. 46 Issue (10): 1267-1274    DOI: 10.3724/SP.J.1037.2010.00199
  论文 本期目录 | 过刊浏览 |
Ü690合金在高温水中的应力腐蚀裂纹扩展行为
但体纯1, 吕战鹏 2, 王俭秋1,韩恩厚1,庄子哲雄2,柯伟1
1. 中国科学院金属研究所腐蚀与防护国家重点实验室, 沈阳 110016
2. 日本东北大学断裂与可靠性研究中心, 仙台 980--8579
CRACK GROWTH BEHAVIOR FOR STRESS CORROSION CRACKING OF 690 ALLOY IN HIGH TEMPERATURE WATER
DAN Tichun 1, LÜ Zhanpeng 2, WANG Jianqiu 1, HAN Enhou 1, SHOJI Testuo 2, KE Wei 1
1. Environmental Corrosion Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2. Fracture and Reliability Research Institute, Tohoku University, Sendai 980–8579, Japan
引用本文:

但体纯 吕战鹏 王俭秋 韩恩厚 庄子哲雄 柯伟. Ü690合金在高温水中的应力腐蚀裂纹扩展行为[J]. 金属学报, 2010, 46(10): 1267-1274.
, , , , , . CRACK GROWTH BEHAVIOR FOR STRESS CORROSION CRACKING OF 690 ALLOY IN HIGH TEMPERATURE WATER[J]. Acta Metall Sin, 2010, 46(10): 1267-1274.

全文: PDF(3989 KB)  
摘要: 用交流电位降(ACPD)技术实现了模拟压水堆一回路340℃高温水环境中690合金应力腐蚀裂纹扩展的实时监测. 断口观察表明, 2种一维冷加工690合金均出现沿晶应力腐蚀裂纹扩展, 裂纹沿平行轧制方向的扩展速率略高于垂直轧制方向的速率; 当溶解H浓度(CdH)由30 μL/g减小到10 μL/g时, 经1075℃退火和700℃固溶处理15 h并一维冷轧25%的T-L取向690合金的平均裂纹扩展速率由4.8×10-11 m/s增加至11.2×10-11 m/s; 应力腐蚀裂纹扩展主要为内氧化机制.
关键词 应力腐蚀 裂纹扩展 交流电位降 高温水    
Abstract:Stress corrosion crack growth rates of alloy 690 thermally treated (TT) after one–directionally (1D) cold–rolling along the longitudinal (L) direction and three–directionally (3D) cold–rolling were successfully measured by ACPD technique in deoxygenated water with different dissolved hydrogen contents (CdH) at 340 ℃. The fracture mode is mainly intergranular mode in both two kinds of alloy 690TT. The crack growth rates in the T–L orientation are higher than those in the L–T orientation in 340 ℃deoxygenated environments. For 1D 25% alloy 690TT with T–L orientation, the measured average crack growth rate is 4.8×10−11 m/s in 340℃ water with CdH 30 μL/g, and the measured average crack growth rate is 1.1×10−10 m/s in 340 ℃ water with CdH 10 μL/g. The mechanism of crack growth is internal oxidation mechanism.
Key wordsstress corrosion cracking (SCC)    crack growth    alternative current potential drop(ACPD)     high–temperature water
收稿日期: 2010-04-26     
基金资助:

国家重点基础研究发展计划项目G2006CB60500和日本PEACE--E项目资助

作者简介: 但体纯, 男, 1981年生, 博士生
[1] Speidel M O, Magdowski R. 6th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors,edited by Gold R E, Simonen E P.(1993): 361-371.
[2] Moshier W C, Brown C M. Corrosion, 2000, Vol. 56(No. 3): 307-320.
[3] Yamazaki S, Lu Z P, Ito Y, Takeda Y, Shoji T. Corros Sci, 2008, Vol. 50(2008): 835-846.
[4] Rebak R B, Szklarska-Smialowska Z. Corros Sci, 1996, Vol. 38, No. 6(1996): 971-988.
[5] Page R A, Mcminn A. Metall Trans A, 1986, Vol. 17A, No. 5(1986): 877-887.
[6] Andresen P L, Hickling J, Ahluwalia A, Wilson J. Corrosion, 2008, Vol. 64(2008): 707-720.
[7] Vaillant F, Mitheux J D, Bouvier O, Vancon D, Zacharie G, Brechet Y, Louchet F. 9th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors,edited by Ford F P, Bruemmer S M, Was G S.(1999): 251-260
[8] Sui G, Titchmarsh J M, Heys G B, Congleton J. Corros Sci, 1997, Vol. 39(No. 3): 565-587.
[9] Scenini F, Newman R C, Cottis R A, Jacko R J. 12th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors,edited by Allen T R, King P J, Nelson L.(2005): 891-901
[10] Young B A, Gao X, Srivatsan T S, King P J. Materials and Design. 2007. Vol. 28: 373-379.
[11] Lu Z, Shoji T, Takeda Y, Kai A, Ito Y. Corrosion. 2007. Vol. 63(No. 11): 1020-1032.
[12] Lu Z P, Shoji T, Takeda Y, Ito Y, Yamazaki S. Corros Sci, 2008, Vol. 50: 698-712.
[13] Lu Z P, Shoji T, Takeda Y, Ito Y, Kai A, Tsuchiya N. Corros Sci. 2008. Vol. 50: 625-638.
[14] Lu Z P, Shoji T, Takeda Y, Ito Y, Kai A, Yamazaki S. Corros Sci, 2008, Vol. 50: 561-575.
[15] Dan T C. PhD Thesis,Institute of Metal Research, Chinese Academy of Sciences, 2010. (但体纯. 中国科学院金属研究所博士论文,2010)
[16] Shen Y, Shewmon P G. Metall Trans A, 1991, Vol. 22A, No. 8(1991): 1857-1864.
[17] Arioka K, Yamada T, Terachi T, Miyamoto T. Corrosion, 2008, 64(9): 691-706.
[18] Lu Z P, Shoji T, Dan T C, Qiu Y B, Yonezawa T. To be published on Corros Sci, 2010.
[19] Moshier W C, Brown C M. Corrosion. 2000. 56(3): 307-320.
[20] Shoji T, Lu Z P, Das N K, Murakami H, Takeda Y, Ismail T. Proceedings of PVP 2009: 2009 ASME Pressure Vessels and Piping Division Conference,edited by ASME.(2009): 1-20
[21] Marchetti L, Perrin S, Raquet O, Pijolat M. Materials Science Forum. 2008. Vols. 595-598: 529-537.
[1] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[3] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[4] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[5] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[6] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[7] 周红伟, 白凤梅, 杨磊, 陈艳, 方俊飞, 张立强, 衣海龙, 何宜柱. 1100 MPa级高强钢的低周疲劳行为[J]. 金属学报, 2020, 56(7): 937-948.
[8] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[9] 马宏驰, 杜翠薇, 刘智勇, 李永, 李晓刚. E690高强低合金钢焊接热影响区典型组织在含SO2海洋环境中的应力腐蚀行为对比研究[J]. 金属学报, 2019, 55(4): 469-479.
[10] 邓平,孙晨,彭群家,韩恩厚,柯伟,焦治杰. 核用304不锈钢辐照促进应力腐蚀开裂研究[J]. 金属学报, 2019, 55(3): 349-361.
[11] 张聪惠, 荣花, 宋国栋, 胡坤. 喷丸表面粗糙度对纯Ti焊接接头在HCl溶液中应力腐蚀开裂行为的影响[J]. 金属学报, 2019, 55(10): 1282-1290.
[12] 张啸尘, 孟维迎, 邹德芳, 周鹏, 石怀涛. 预循环应力对高速列车关键结构用铝合金材料疲劳裂纹扩展行为的影响[J]. 金属学报, 2019, 55(10): 1243-1250.
[13] 余军, 张德平, 潘若生, 董泽华. 井下含硫环空液中P110油管钢应力腐蚀开裂的电化学噪声特征[J]. 金属学报, 2018, 54(10): 1399-1407.
[14] 王瑾, 余黎明, 黄远, 李会军, 刘永长. 晶体取向和He浓度对bcc-Fe裂纹扩展行为的影响[J]. 金属学报, 2018, 54(1): 47-54.
[15] 苑洪钟,刘智勇,李晓刚,杜翠薇. 外加电位对X90钢及其焊缝在近中性土壤模拟溶液中应力腐蚀行为的影响[J]. 金属学报, 2017, 53(7): 797-807.