Please wait a minute...
金属学报  2010, Vol. 46 Issue (4): 500-505    DOI: 10.3724/SP.J.1037.2009.00706
  论文 本期目录 | 过刊浏览 |
凝固速率跃迁对定向凝固Al-40%Cu过共晶合金初生Al2Cu相的影响
全琼蕊;李双明;傅恒志
西北工业大学凝固技术国家重点实验室; 西安 710072
EFFECT OF AN ABRUPT GROWTH RATE ON PRIMARY Al2Cu PHASE IN DIRECTIONAL SOLIDIFICATION OF Al–40%Cu HYPEREUTECTIC ALLOY
QUAN Qiongrui; LI Shuangming; FU Hengzhi
State Key Laboratory of Solidification Processing; Northwestern Polytechnical University; Xi’an 710072
引用本文:

全琼蕊 李双明 傅恒志. 凝固速率跃迁对定向凝固Al-40%Cu过共晶合金初生Al2Cu相的影响[J]. 金属学报, 2010, 46(4): 500-505.
, , . EFFECT OF AN ABRUPT GROWTH RATE ON PRIMARY Al2Cu PHASE IN DIRECTIONAL SOLIDIFICATION OF Al–40%Cu HYPEREUTECTIC ALLOY[J]. Acta Metall Sin, 2010, 46(4): 500-505.

全文: PDF(1270 KB)  
摘要: 

采用高温度梯度定向凝固装置进行了Al-40%Cu(质量分数)过共晶合金的定向凝固实验, 研究了凝固速率跃迁过程中的凝固组织演变. 结果表明, 当定向凝固速率从10 μm/s 跃迁减速到2 μm/s时, 由于固/液界面附近的液相成分向共晶点成分变化以及耦合共晶组织的界面生长温度高于初生Al2Cu相的界面生长温度, 合金凝固组织从初生Al2Cu枝晶和Al/Al2Cu共晶组织转变为全耦合层片共晶组织. 组织转变过程中, 板条状的初生Al2Cu相先分解成小尺寸的初生相, 然后小的初生相逐渐被共晶组织所取代, 这种组织转变是凝固界面前沿液相中溶质扩散不足造成的, 而不是由合金中存在的热及溶质对流引起的. 在初生相生长形态中, 由于凝固速率跃迁引起的界面前沿液相中Cu成分富集, 造成凝固界面生长温度升高, Jackson因子α变小, Al2Cu初生相由小平面相向非小平面相转变.

关键词 定向凝固 速率跃迁 初生Al2Cu相 小平面相 共晶组织    
Abstract

Intermetallics combining metal and ceramic properties exhibit colorfully complicated growth morphologies in solidification. Different from the solidus phase solidification, intermetallic solidification remains less understanding of the correlation between processing parameters and microstructure morphologies. In this paper, considering that the intermetallic compound Al2Cu phase has well–known thermophysical properties available for the theoretical and experimental research, we carried out the directional solidification experiments and focused on an Al–Al2Cu hypereutectic alloy, where the Al2Cu phase was solidified as a primary phase. The primary Al2Cu phase growth behavior in the experiments included phase competition growth between coupled eutectic and primary phase, faceted phase transition and its change in growth morphology. By using a high thermal gradient directional solidification apparatus, the directionally solidified microstructures of Al–40%Cu (mass fraction) hyereutectic alloy were investigated and discussed based on the competition growth model. As the growth rate was changed abruptly from 10 μm/s to 2 μm/s, the microstructure transition from a primary Al2Cu dendrite plus interdendritic eutectic to an entirely coupled eutectic occurred due to the interface growth temperature of the coupled eutectic exceeding that of the primary Al2Cu dendrite. Also, the alloy liquid composition ahead of the solid/liquid interface approaching the eutectic point caused this microstructure transition. Simultaneously, in the changing–growth rate experiments, the primary Al2Cu dendrites were firstly broken into small ones and then became the eutectic microstructure; it was interpreted rather by the decrease in liquid solute concentration ahead of the solid/liquid interface tan by te effect of the thermal–solutal convection. Moreover, the morphology change iphase growth from faceted primary Al2Cu phase to non–faceted phase was observed by reducing abruptly the growtrate from 10 μm/s to 2 μm/s, which can be explained by the Jackson fctor α decreasing with increasig the interface growth temperature of primary Al2Cu pase.

Key wordsdirectional solidification    abrupt growth rate    primary Al2Cu phase    faceted phase    eutectic microstructure
收稿日期: 2009-10-26     
基金资助:

国家自然科学基金资助项目50971101, 新世纪优秀人才支持计划项目NCET--07--0692和凝固技术国家重点实验室自主研究课题项目34-TP-2009资助

作者简介: 全琼蕊, 女, 1984年生, 硕士生

[1] Moshksar M M, Mirzaee M. Intermetallics, 2004; 12: 1361
[2] Johnson D R, Inui H, Muto S, Omiya Y, Yamanaka T. Acta Mater, 2006; 54: 1077
[3] Li X Z, Fan J L, Guo J J, Su Y Q, Fu H Z. Acta Metall Sin, 2009; 45: 308
(李新中, 樊江磊, 郭景杰, 苏彦庆, 傅恒志. 金属学报, 2009; 45: 308)
[4] Zhong H, Li S M, Lu H Y, Zou G R, Liu L, Fu H Z. J Cryst Growth, 2008; 310: 3366
[5] Ozawa S, Satio T, Motegi T. J Alloys Compd, 2004; 363: 263
[6] Cheng C J, Zhu S G, Li J G, Li Y H. Mater Sci Eng, 2005; B122: 174
[7] Tiller W A. The Science of Crystallization: Microscopic Interface Phenomena, Cambridge: Cambridge University Press, 1991: 52
[8] Fu H Z, Guo J J, Liu L, Li J S. Directional Solidification and Processing of Advanced Materials, Beijing: Science Press, 2008: 17
(傅恒志, 郭景杰, 刘林, 李金山. 先进材料定向凝固, 北京: 科学出版社, 2008: 17)
[9] Walker H, Liu S, Lee J H, Trivedi R. Metall Mater Trans, 2007; 38A: 1417
[10] Gill S C, Kurz W. Acta Metall Mater, 1995; 43: 139
[11] Ourdjini A, Liu J C, Elliott R. Mater Sci Technol, 1994; 10: 312
[12] Yilmaz F, Elliott R. J Cryst Growth, 1984; 66: 465
[13] LEE J H, Liu S, Miyahara H, Trivedi R. Metall Mater Trans, 2004; 35B: 910
[14] LEE J H, Liu S, Trivedi R. Metall Mater Trans, 2005; 36A: 3111
[15] Ting L, Li S M, Fu H Z. Rare Met Mater Eng, 2007; 36: 617
(唐玲, 李双明, 傅恒志. 稀有金属材料与工程, 2007; 36: 617)
[16] Zhong H, Li S M, Lv H Y, Liu L, Zhou G R, Fu H Z. Sci China, 2007; 50G: 432
[17] Kurz W, Fisher D J. Fundamentals of Solidification, 4th ed. Zurich: Trans Tech Publications Ltd, 1998: 35
[18] Tiller W A. The Science of Crystallization: Macroscopic Phenomena and Defect Generation. Cambridge: Cambridge University Press, 1992: 144
[19] Umeda T, Okane T, Kurz W. Acta Mater, 1996; 44: 4209
[20] Burden M H, Hunt J D. J Cryst Growth, 1974; 22: 109
[21] Magnin P, Trivedi R. Acta Mater, 1991; 4: 453
[22] Li S M, Ma B L, Li X L, Liu L, Fu H Z. Sci China, 2005; 48E: 270
[23] Jackson K A, Hunt J D. Trans Metall Soc AIME, 1966; 236: 1129
[24] Karma A, Srkissian A. Metall Mater Trans, 1996; 27A: 635
[25] Stefanescu D M. Science and Engineering of Casting Solidification, 2nd ed. Berlin: Springer, 2009: 176

[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[4] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[5] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[6] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[7] 马德新, 赵运兴, 徐维台, 皮立波, 李重行. 高温合金单晶铸件中共晶组织分布的表面效应[J]. 金属学报, 2021, 57(12): 1539-1548.
[8] 张小丽, 冯丽, 杨彦红, 周亦胄, 刘贵群. 二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响[J]. 金属学报, 2020, 56(7): 969-978.
[9] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[10] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[11] 方辉,薛桦,汤倩玉,张庆宇,潘诗琰,朱鸣芳. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟[J]. 金属学报, 2019, 55(5): 664-672.
[12] 唐文书,肖俊峰,李永君,张炯,高斯峰,南晴. 再热恢复处理对蠕变损伤定向凝固高温合金γ′相的影响[J]. 金属学报, 2019, 55(5): 601-610.
[13] 杨燕, 杨光昱, 罗时峰, 肖磊, 介万奇. Mg-14.61Gd合金的定向凝固组织及生长取向[J]. 金属学报, 2019, 55(2): 202-212.
[14] 金浩, 贾清, 刘荣华, 线全刚, 崔玉友, 徐东生, 杨锐. 籽晶制备及Ti-47Al合金PST晶体取向控制[J]. 金属学报, 2019, 55(12): 1519-1526.
[15] 刘林, 孙德建, 黄太文, 张琰斌, 李亚峰, 张军, 傅恒志. 高梯度定向凝固技术及其在高温合金制备中的应用[J]. 金属学报, 2018, 54(5): 615-626.