Please wait a minute...
金属学报  2010, Vol. 46 Issue (5): 547-553    DOI: 10.3724/SP.J.1037.2009.00669
  论文 本期目录 | 过刊浏览 |
湿H2S环境中L360MCS钢焊接热影响区的应力导向氢致开裂行为
周成双; 郑树启; 陈长风
中国石油大学(北京) 机电工程学院; 北京 102249
STRESS ORIENTED HYDROGEN INDUCED CRACKING BEHAVIOR OF HEAT AFFECTED ZONE OF L360MCS STEEL IN WET H2S ENVIRONMENT
ZHOU Chengshuang; ZHENG Shuqi; CHEN Changfeng
Mechanical and Electrical Engineering Faculty; China University of Petroleum; Beijing 102249
引用本文:

周成双 郑树启 陈长风. 湿H2S环境中L360MCS钢焊接热影响区的应力导向氢致开裂行为[J]. 金属学报, 2010, 46(5): 547-553.
. STRESS ORIENTED HYDROGEN INDUCED CRACKING BEHAVIOR OF HEAT AFFECTED ZONE OF L360MCS STEEL IN WET H2S ENVIRONMENT[J]. Acta Metall Sin, 2010, 46(5): 547-553.

全文: PDF(968 KB)  
摘要: 

利用裂纹面分离及SEM和EDS研究了L360MCS钢焊接热影响区(HAZ)在湿H2S环境中的应力导向氢致开裂(SOHIC)行为. 结果表明: 应力导向氢致开裂裂纹由轴向和纵向两种裂纹组成, 先形成轴向裂纹, 后形成纵向裂纹, 两种裂纹均独立形核. 裂纹带有明显的阶梯状氢致开裂特征, 裂纹面呈现准解理型断口形貌. 拉应力在裂纹形核和扩展方面起主要作用, 拉应力不仅增加了拉伸区的过饱和氢浓度, 而且直接推动纵向裂纹的扩展. 轴向裂纹在MnS和CaS夹杂以及析出相处形核, 以氢压为主要的裂纹扩展动力. 而纵向裂纹则主要在析出相处萌生, 裂纹扩展受拉应力和氢压双重控制, 拉应力为主导.

关键词 管线钢热影响区(HAZ)应力导向氢致开裂(SOHIC)H2S拉应力    
Abstract

Stress oriented hydrogen induced cracking (SOHIC) behavior of heat affected zone (HAZ) of L360MCS steel in wet H$_{2}$S
environment was studied by separating crack, SEM and EDS. The cracks are formed by four--point bending test in
wet H$_{2}$S environment. The microstructure of HAZ is obviously different from
the base metal, and the hardness of HAZ is lower than those of the base metal and welding joint. The fracture
surface of the cracks was separated and the hydrogen blisters were torn off. The cross section and fracture surface of
the cracks are analyzed by SEM and EDS. Results show that the cracks of SOHIC appeared as axial crack and vertical
crack, and the former is preferential. The appearance of cracks is associated with the low hardness value of
HAZ. The dimension of hydrogen blasters in tension stress zone of bended specimen is bigger than that in
unstressed specimen, which is due to hydrogen concentration in bended specimen is higher. Both axial and vertical
cracks nucleate independently and propagate in the quasi--cleavage manner. Tension stress not only increases the
supersaturated hydrogen concentration in tension stress zone but directly promotes vertical crack propagation.
Axial crack nucleates at MnS, CaS and precipitated phase, and propagates under internal hydrogen pressure.
Vertical crack mainly nucleates on precipitated phase and propagates under both internal hydrogen pressure and
tensile stress.

Key wordspipeline steel    heat affected zone (HAZ)    stress oriented hydrogen induce cracking (SOHIC)    H2S    tension stress
收稿日期: 2009-10-10     
基金资助:

国家自然科学基金项目50871122和高等学校博士学科点专项科研基金项目20070425021资助

作者简介: 周成双, 男, 1982年生, 博士生

[1] Pargeter R J. In: NACE, ed., Corrosion 2007, Houston, TX: NACE, 2007: 115
[2] Guo H, Li G F, Cai X, Yang W. Acta Metall Sin, 2004; 40: 967
(郭浩, 李光福, 蔡珣 , 杨武. 金属学报, 2004; 40: 967)
[3] Ren X C, Wu M, Chu W Y, Li J X, Jiao L J, Jiang B, Chen G, Cui Y H. Acta Metall Sin, 2007; 43: 149
(任学冲, 武明, 褚武扬, 李金许, 乔利杰, 江波, 陈 刚, 崔银会. 金属学报, 2007; 43: 149)

[4] Liu Z Y, Zhai G L, Dui C W, Li X G. Acta Metall Sin, 2008; 44: 209
(刘智勇, 翟国丽, 杜翠薇, 李晓刚. 金属学报, 2008; 44: 209)
[5] Guo J, Yang S W, Shang C J, Wang Y, He X L. Corros Sci, 2008; 51: 242
[6] Ernesto V, Andrej A. Eng Fail Anal, 2009; 16: 164
[7] Cayard M S, Kane R D, Cooke D L. In: NACE, ed., Corrosion 97, Houston, TX: NACE, 1997: 525
[8] Cayard M S, Kane R D, Horvath R J. In: NACE ed., Corrosion 2002, Houston, TX: NACE, 2002: 554
[9] Orie K E, Fletcher F B. In: NACE, ed., Corrosion 99, Houston, TX: NACE, 1999: 632

[10] NACE International. NACE Standard MR0177–2005, Houston, 2005
[11] ASTM. ASTM Standard G39–99, Philadelphia, 2005
[12] NACE International. NACE Standard MR0284–2003, Houston, 2003
[13] Zhao M C, Shan Y Y, Qu J B, Xiao F R, Zhong Y, Yang K. In: CSM ed., CSM 2001 Annual Meeting Proceedings. Beijing: Metallurgical Industry Press, 2001: 891
(赵明纯, 单以银, 曲锦波, 肖福仁, 仲勇, 杨柯. 见中国金属学会主编, 2001年中国钢铁年会论文集.
北京: 冶金工业出版社, 2001: 891)

[14] Lee H W. Mater Sci Eng, 2007; A445: 328
[15] Sojka J, Jerome M, Sozanska M, Vanova P, Rytirova L, Jonsta P. Mater Sci Eng, 2008; A430: 237
[16] Wan K K, Seong U K, Boo Y Y, Kyoo Y K. Corros Sci, 2008; 50: 3336
[17] Parkins R N. Corrosion, 1987; 43: 130
[18] Chu R, Chen W, Wang S H. Corrosion, 2004; 60: 275
[19] Lynch S P. In: NACE, ed., Corrosion 2007, Houston, TX: NACE, 2007: 493
[20] Maroecic P, Mclellan R B. Acta Metall, 1998; 46: 5593
[21] Zang D, MeLellan R B. Acta Metall, 1999; 47: 1671
[22] Harada S, Ono D, Sugimoto H, Fukai Y. J Alloys Compd, 2007; 446: 474
[23] Rebak R B, Xia Z, Safruddin R, Szklarska S Z. Corrosion, 1996; 52: 396

[1] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[2] 李谦, 刘凯, 赵天亮. 弹性拉应力下Q235碳钢在5%NaCl盐雾中的成锈行为及其机理[J]. 金属学报, 2023, 59(6): 829-840.
[3] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[4] 李学达, 李春雨, 曹宁, 林学强, 孙建波. 高强管线钢焊接临界再热粗晶区中逆转奥氏体的逆相变晶体学[J]. 金属学报, 2021, 57(8): 967-976.
[5] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[6] 陈芳,李亚东,杨剑,唐晓,李焰. X80钢焊接接头在模拟天然气凝析液中的腐蚀行为[J]. 金属学报, 2020, 56(2): 137-147.
[7] 李亚东,李强,唐晓,李焰. X80管线钢焊接接头的模拟重构及电偶腐蚀行为表征[J]. 金属学报, 2019, 55(6): 801-810.
[8] 张体明, 赵卫民, 蒋伟, 王永霖, 杨敏. X80钢焊接残余应力耦合接头组织不均匀下氢扩散的数值模拟[J]. 金属学报, 2019, 55(2): 258-266.
[9] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[10] 舒韵, 闫茂成, 魏英华, 刘福春, 韩恩厚, 柯伟. X80管线钢表面SRB生物膜特征及腐蚀行为[J]. 金属学报, 2018, 54(10): 1408-1416.
[11] 史显波, 严伟, 王威, 单以银, 杨柯. 新型含Cu管线钢的抗氢致开裂性能[J]. 金属学报, 2018, 54(10): 1343-1349.
[12] 董利明,杨莉,戴军,张宇,王学林,尚成嘉. Mn、Ni、Mo含量对K65热煨弯管焊缝组织转变和低温韧性的影响[J]. 金属学报, 2017, 53(6): 657-668.
[13] 万红霞,宋东东,刘智勇,杜翠薇,李晓刚. 交流电对X80钢在近中性环境中腐蚀行为的影响[J]. 金属学报, 2017, 53(5): 575-582.
[14] 史显波,徐大可,闫茂成,严伟,单以银,杨柯. 新型含Cu管线钢的微生物腐蚀行为研究[J]. 金属学报, 2017, 53(2): 153-162.
[15] 于利宝, 闫茂成, 马健, 吴明浩, 舒韵, 孙成, 许进, 于长坤, 卿永长. 富Fe红壤中管线钢的硫酸盐还原菌腐蚀行为[J]. 金属学报, 2017, 53(12): 1568-1578.