Please wait a minute...
金属学报  2010, Vol. 46 Issue (4): 494-499    DOI: 10.3724/SP.J.1037.2009.00570
  论文 本期目录 | 过刊浏览 |
T6I6时效对6061铝合金拉伸及晶间腐蚀性能的影响
李 海1; 潘道召1;王芝秀1;2; 郑子樵2
1. 江苏工业学院材料科学与工程学院; 常州 213164
2. 中南大学材料科学与工程学院; 长沙 410083
INFLUENCE OF T6I6 TEMPER ON TENSILE AND INTERGRANULAR CORROSION PROPERTIES OF 6061 ALUMINUM ALLOY
LI Hai 1; PAN Daozhao 1; WANG Zhixiu 1;2; ZHENG Ziqiao 2
1. School of Materials Science and Engineering; Jiangsu Polytechnic University; Changzhou 213164
2. School of Materials Science and Engineering; Central South University; Changsha 410083
引用本文:

李 海 潘道召 王芝秀 郑子樵. T6I6时效对6061铝合金拉伸及晶间腐蚀性能的影响[J]. 金属学报, 2010, 46(4): 494-499.
, , , . INFLUENCE OF T6I6 TEMPER ON TENSILE AND INTERGRANULAR CORROSION PROPERTIES OF 6061 ALUMINUM ALLOY[J]. Acta Metall Sin, 2010, 46(4): 494-499.

全文: PDF(1900 KB)  
摘要: 

对T6I6时效处理的6061铝合金的拉伸性能、晶间腐蚀性能和电导率进行了测试, 并采用OM和TEM对其组织进行了观察. 结果表明, 6061铝合金经180℃×8 h T6峰值时效后, 虽然强度较高, 但有严重晶间腐蚀倾向;T6I6预时效时间对拉伸性能影响不大, 但中断时效温度和时间对其影响显著.由于较高的中断时效温度和较长的中断时间能获得高密度的晶内析出相和呈球状不连续分布的晶界析出相, 因此, T6I6时效处理后的6061铝合金不仅能保持较高强度, 同时还能显著提高晶间腐蚀抗力. 经180 ℃×2 h+150 ℃×2160 h+180 ℃×8 h T6I6时效, 合金抗拉强度和屈服强度分别为348.5和326.9 MPa, 相对于T6状态, 仅分别下降了2.1%和1.4%,腐蚀类型由T6状态的晶间腐蚀转变为均匀腐蚀, 腐蚀深度约为30 μm.

关键词 6061铝合金 T6I6时效 拉伸性能 晶间腐蚀    
Abstract

It is important to achieve a good combinization of high tensile properties and high intergranular corrosion resistance for 6000 series alloys in wider applications. In this paper, the effect of T6I6 temper on tensile and intergranular corrosion properties of 6061 aluminum alloy was investigated by tensile test, intergranular corrosion test, OM and TEM. The experimental results show that after T6 temper the ultimate strength and yield strength of 6061 alloy are 356.0 and 331.6 MPa respectively, but it has a serious tendency to intergranular corrosion sensitivity. It is found that pre–ageing time of T6I6 temper has no remarked effect on tensile properties of the alloy, but interrupted temperature and interrupted time have obvious effects on its tensile and intergranular corrosion properties. After T6I6 treatment, the tensile strength of 6061 aluminium alloy reaches its peak strength firstly and then decreases to a small value with the increase of interrupted time after pre–ageing at interrupted temperature of 150 ℃, and the corrosion mode also changes from intergranular to uniform corrosion. Higher interrupted temperature and longer interrupted time are beneficial to achieve a good combinization of tensile properties and intergranular corrosion resistance, which results from the high density of precipitates inside grains and discontinuously distributed precipitates on grain boundaries. After an optimum T6I6 treatment of 180 ℃×2 h+150 ℃×2160 h+180 ℃×8 h, the ultimate strength and yield strength are 348.5 and 326.9 MPa respectively, close to those after T6 temper. The corrosion mode is changed from the intergranular corrosion of 6061 Al alloy after T6 temper to a uniform etching with the etching depth about 30 μm.

Key words6061 aluminum alloy    T6I6 temper    tensile properties    intergranular corrosion
收稿日期: 2009-09-02     
基金资助:

国家重点基础研究发展计划资助项目2005CB623705

作者简介: 李海, 男, 1972年生, 副教授

[1] Troeger L P, Starke E A. Adv Eng Mater, 2000; 12: 802
[2] Immarigeon J P, Holt R T, Koul A K, Zhao L, Wallace W, Beddoes J C. Aircraft Appl, 1995; 35: 43
[3] Starke E A, Staley J T. Aerospace Sci, 1995; 32: 141
[4] Bhattamishra A K, Lal K Z. Metallkd, 1998; 89: 743
[5] Larsen M H, Walmsley J C, lunder O, Nisancioglu K. Mater Sci Forum, 2006; 519–521: 667
[6] Guillaumin V, Mankowski G. Corros Sci, 2000; 56: 13
[7] Chen Z Y, Lin Z J, Song W S. Corros Prot, 2001; 5: 191
(陈卓元, 林志坚, 宋文桑. 腐蚀与防护, 2001; 5: 191)
[8] Zhang Z, Song S Z, Tao L. J Chin Soc Corros Prot, 2008; 28(3): 135
(张正, 宋诗哲, 陶蕾. 中国腐蚀与防护学报, 2008; 28(3): 135)
[9] Svenningsen G, Larsen M H, Lein J E, Nordlien J H, Nisancioglu K. In: Nie J F, Morton A J, Muddle B C, eds., Proc of the 9th International Conf on Aluninium Alloys( ICAA9), Melbourne: Aust Inst Mater Eng, 2004: 818
[10] Dif R, Bechet D, Warner T, Ribes H. Proc of the 6th International Conf on Aluminium Alloys (ICCA6), Tokyo: Japan Inst Metals, 1998: 1991
[11] Lumley R N, Polmear I J. Scr Mater, 2004; 50: 1228
[12] Lumley R N, Polmear I J, Morton A J. Mater Sci Forum, 2002; 396–402: 893
[13] Buha J, Lumley R N, Crosky A G. Mater Sci Eng, 2008; A492: 1
[14] Buha J, Lumley R N, Crosky A G, Hono K. Acta Mater, 2007; 55: 3015
[15] Chen Z G, Zheng Z Q, Li J Z. Min Metall Eng, 2001; 21(4): 80
(陈志国, 郑子樵, 李竞舟. 矿冶工程, 2001; 21(4): 80)
[16] Li H, Zheng Z Q, Wang Z X. Rear Met Mater Eng, 2005; 341029
(李 海, 郑子樵, 王芝秀. 稀有金属材料与工程, 2005; 34: 1029)
[17] Li H, Zheng Z Q, Wang Z X. Rear Met Mater Eng, 2005; 34: 1230
(李 海, 郑子樵, 王芝秀. 稀有金属材料与工程, 2005; 34: 1230)
[18] Ferragut R, Dupasquier A, Macchi C E, Somoza A, Lumley R N, Polmear I J. Scr Mater, 2009; 60: 137
[19] Buha J, Lumley R N, Crosky A G. Metall Mater Trans, 2006; 10: 3120
[20] Lumley R N, Polmear I J, Morton A J. Mater Sci Forum, 2003; 426–432: 303
[21] Li H, Zheng Z Q, Wang Z X. Trans Mater Heat Treat Chin, 2004; 25(3): 57
(李海, 郑子樵, 王芝秀. 材料热处理学报, 2004; 25(3): 57)
[22] Ikeno S, Matsuda K. Mater Sci Forum, 2003; 426–462: 357
[23] Liu S A, Yuan D, Yan Q Q, Zhang H. Heat Treat Met, 2005; 30(11): 56
(刘诗安, 袁 东, 严琦琦, 张 辉. 金属热处理, 2005; 30(11): 56)
[24] Jiang H F, Lu Z, Huang M, Lu J, Wang S Q, Dai S L. Chin J Nonferrous Met, 2002; 12: 214
(姜海峰, 陆 政, 黄敏, 卢健, 王胜强, 戴圣龙. 中国有色金属学报, 2002; 12: 214)
[25] Svenningsen G, Larsen M H, Walmsley J C, Nordlien J H, Nisancioglu K. Corros Sci, 2006; 48: 1530
[26] Liu Y, Zhou X, Thompson E G, Hashimoto T, Scamans M G, Afseth A. Acta Mater, 2007; 55: 355
[27] Zhong J W, Zhou H T, Zhao Z K, Li Q B, Zhou X. Chin J Nonferrous Met, 2008; 18: 1035
(钟建伟, 周海涛, 赵仲恺, 李庆波, 周啸. 中国有色金属学报, 2008, 18: 1035)

[1] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[2] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[3] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[4] 赵婉辰, 郑晨, 肖斌, 刘行, 刘璐, 余童昕, 刘艳洁, 董自强, 刘轶, 周策, 吴洪盛, 路宝坤. 基于Bayesian采样主动机器学习模型的6061铝合金成分精细优化[J]. 金属学报, 2021, 57(6): 797-810.
[5] 刘先锋, 刘冬, 刘仁慈, 崔玉友, 杨锐. Ti-43.5Al-4Nb-1Mo-0.1B合金的包套热挤压组织与拉伸性能[J]. 金属学报, 2020, 56(7): 979-987.
[6] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[7] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[8] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[9] 蔡超,李煬,李劲风,张昭,张鉴清. 2A97 Al-Li合金薄板时效析出与电位及晶间腐蚀的相关性研究[J]. 金属学报, 2019, 55(8): 958-966.
[10] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[11] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[12] 陈胜虎, 戎利建. Ni-Fe-Cr合金固溶处理后的组织变化及其对性能的影响[J]. 金属学报, 2018, 54(3): 385-392.
[13] 李冬冬, 钱立和, 刘帅, 孟江英, 张福成. Mn含量对Fe-Mn-C孪生诱发塑性钢拉伸变形行为的影响[J]. 金属学报, 2018, 54(12): 1777-1784.
[14] 陈瑞, 许庆彦, 郭会廷, 夏志远, 吴勤芳, 柳百成. Al-7Si-Mg铝合金拉伸过程应变硬化行为及力学性能模拟研究[J]. 金属学报, 2017, 53(9): 1110-1124.
[15] 席明哲, 吕超, 吴贞号, 尚俊英, 周玮, 董荣梅, 高士友. 连续点式锻压激光快速成形TC11钛合金的组织和力学性能[J]. 金属学报, 2017, 53(9): 1065-1074.