|
|
|
| 选区激光熔化GH4169高温合金的微观组织和力学性能 |
孙勇飞1,2, 向超2( ), 张涛2, 吴文伟1,2, 邹志航2, 刘金鹏2, 孙桂芳2,3( ), 蒲吉斌4, 韩恩厚2,5 |
1 广州大学 物理与材料科学学院 广州 510006 2 广东腐蚀科学与技术创新研究院 广州 510530 3 东南大学 机械工程学院 南京 211189 4 中国科学院宁波材料技术与工程研究所 海洋关键材料全国重点实验室 宁波 315201 5 华南理工大学 材料科学与工程学院 广州 510641 |
|
| Microstructures and Mechanical Properties of GH4169 Superalloy Manufactured by Selective Laser Melting |
SUN Yongfei1,2, XIANG Chao2( ), ZHANG Tao2, WU Wenwei1,2, ZOU Zhihang2, LIU Jinpeng2, SUN Guifang2,3( ), PU Jibin4, HAN En-Hou2,5 |
1 School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China 2 Institute of Corrosion Science and Technology, Guangzhou 510530, China 3 School of Mechanical Engineering, Southeast University, Nanjing 211189, China 4 State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China 5 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China |
引用本文:
孙勇飞, 向超, 张涛, 吴文伟, 邹志航, 刘金鹏, 孙桂芳, 蒲吉斌, 韩恩厚. 选区激光熔化GH4169高温合金的微观组织和力学性能[J]. 金属学报, 2025, 61(12): 1829-1844.
Yongfei SUN,
Chao XIANG,
Tao ZHANG,
Wenwei WU,
Zhihang ZOU,
Jinpeng LIU,
Guifang SUN,
Jibin PU,
En-Hou HAN.
Microstructures and Mechanical Properties of GH4169 Superalloy Manufactured by Selective Laser Melting[J]. Acta Metall Sin, 2025, 61(12): 1829-1844.
| [1] |
Wang L, Lu B H. Development of additive manufacturing technology and industry in China [J]. Strategic Study CAE, 2022, 24(4): 202
|
| [1] |
王 磊, 卢秉恒. 我国增材制造技术与产业发展研究 [J]. 中国工程科学, 2022, 24(4): 202
|
| [2] |
Sui S, Tan H, Chen J, et al. The influence of Laves phases on the room temperature tensile properties of Inconel 718 fabricated by powder feeding laser additive manufacturing [J]. Acta Mater., 2019, 164: 413
|
| [3] |
Huang W P. Microstructure and mechanical property control of GH4169 superalloy produced by selective laser melting [D]. Wuhan: Huazhong University of Science and Technology, 2021
|
| [3] |
黄文普. 激光选区熔化成形GH4169合金的组织与性能调控 [D]. 武汉: 华中科技大学, 2021
|
| [4] |
Song B, Zhang J L, Zhang Y J, et al. Research progress of materials design for metal laser additive manufacturing [J]. Acta Metall. Sin., 2023, 59: 1
|
| [4] |
宋 波, 张金良, 章媛洁 等. 金属激光增材制造材料设计研究进展 [J]. 金属学报, 2023, 59: 1
|
| [5] |
Zhao Y N, Guo Q Y, Ma Z Q, et al. Comparative study on the microstructure evolution of selective laser melted and wrought IN718 superalloy during subsequent heat treatment process and its effect on mechanical properties [J]. Mater. Sci. Eng., 2020, A791: 139735
|
| [6] |
Zhang H, Yang K. Overview of the present situation and application of additive manufacturing [J]. Packag. Eng., 2021, 42(16): 9
|
| [6] |
张 衡, 杨 可. 增材制造的现状与应用综述 [J]. 包装工程, 2021, 42(16): 9
|
| [7] |
Yang H, Li Y, Hao J M. Research progress of laser additively manufactured Inconel 718 superalloy [J]. Mater. Rep., 2022, 36(6): 20080021
|
| [7] |
杨 浩, 李 尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展 [J]. 材料导报, 2022, 36(6): 20080021
|
| [8] |
Li F Z. Overview of the development and application of China's additive manufacturing industry [J]. Ind. Technol. Innovation, 2017, 4(4): 1
|
| [8] |
李方正. 中国增材制造产业发展及应用情况综述 [J]. 工业技术创新, 2017, 4(4): 1
|
| [9] |
Li R F, Li K, Zhou W Z. Research progress in laser metal 3D printing technology [J]. Adhesion, 2022, 49(7): 98
|
| [9] |
李瑞锋, 李 客, 周伟召. 激光金属3D打印技术的研究进展 [J]. 粘接, 2022, 49(7): 98
|
| [10] |
Yang Q, Lu Z L, Huang F X, et al. Research on status and development trend of laser additive manufacturing [J]. Aviat. Manuf. Technol., 2016, (12): 26
|
| [10] |
杨 强, 鲁中良, 黄福享 等. 激光增材制造技术的研究现状及发展趋势 [J]. 航空制造技术, 2016, (12): 26
|
| [11] |
Ni L. Study on heat treatment process and mechanical properties of selective laser melting GH4169 alloy [D]. Zhenjiang: Jiangsu University, 2022
|
| [11] |
倪 磊. 激光选区熔化GH4169合金的热处理工艺与力学性能研究 [D]. 镇江: 江苏大学, 2022
|
| [12] |
Bera T, Mohanty S. A review on residual stress in metal additive manufacturing [J]. 3D Print. Addit. Manuf., 2024, 11: 1462
|
| [13] |
Kizhakkinan U, Seetharaman S, Raghavan N, et al. Laser powder bed fusion additive manufacturing of maraging steel: A review [J]. J. Manuf. Sci. Eng., 2023, 145: 110801
|
| [14] |
Kwabena Adomako N, Haghdadi N, Primig S. Electron and laser-based additive manufacturing of Ni-based superalloys: A review of heterogeneities in microstructure and mechanical properties [J]. Mater. Des., 2022, 223: 111245
|
| [15] |
Le W, Chen Z W, Naseem S, et al. Study on the microstructure evolution and dynamic recrystallization mechanism of selective laser melted Inconel 718 alloy during hot deformation [J]. Vacuum, 2023, 209: 111799
|
| [16] |
Hosseini E, Popovich V A. A review of mechanical properties of additively manufactured Inconel 718 [J]. Addit. Manuf., 2019, 30: 100877
|
| [17] |
Wang Y, Guo W, Zheng H, et al. Microstructure, crack formation and improvement on nickel-based superalloy fabricated by powder bed fusion [J]. J. Alloys Compd., 2023, 962: 171151
|
| [18] |
Ni M, Chen C, Wang X J, et al. Anisotropic tensile behavior of in situ precipitation strengthened Inconel 718 fabricated by additive manufacturing [J]. Mater. Sci. Eng., 2017, A701: 344
|
| [19] |
Aydinöz M E, Brenne F, Schaper M, et al. On the microstructural and mechanical properties of post-treated additively manufactured Inconel 718 superalloy under quasi-static and cyclic loading [J]. Mater. Sci. Eng., 2016, A669: 246
|
| [20] |
Fayed E M, Saadati M, Shahriari D, et al. Effect of homogenization and solution treatments time on the elevated-temperature mechanical behavior of Inconel 718 fabricated by laser powder bed fusion [J]. Sci. Rep., 2021, 11: 2020
|
| [21] |
Cao M, Zhang D Y, Gao Y, et al. The effect of homogenization temperature on the microstructure and high temperature mechanical performance of SLM-fabricated IN718 alloy [J]. Mater. Sci. Eng., 2021, A801: 140427
|
| [22] |
Ni M, Liu S C, Chen C, et al. Effect of heat treatment on the microstructural evolution of a precipitation-hardened superalloy produced by selective laser melting [J]. Mater. Sci. Eng., 2019, A748: 275
|
| [23] |
Huang W P, Yang J J, Yang H H, et al. Heat treatment of Inconel 718 produced by selective laser melting: Microstructure and mechanical properties [J]. Mater. Sci. Eng., 2019, A750: 98
|
| [24] |
Švec M, Solfronk P, Nováková I, et al. Comparison of the structure, mechanical properties and effect of heat treatment on alloy Inconel 718 produced by conventional technology and by additive layer manufacturing [J]. Materials, 2023, 16: 5382
|
| [25] |
Amato K N, Gaytan S M, Murr L E, et al. Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting [J]. Acta Mater., 2012, 60: 2229
|
| [26] |
Liu B, Ding Y T, Xu J Y, et al. Outstanding strength-ductility synergy in Inconel 718 superalloy via laser powder bed fusion and thermomechanical treatment [J]. Addit. Manuf., 2023, 67: 103491
|
| [27] |
Feng K Y, Liu P, Li H X, et al. Microstructure and phase transformation on the surface of Inconel 718 alloys fabricated by SLM under 1050 oC solid solution + double ageing [J]. Vacuum, 2017, 145: 112
|
| [28] |
Yazdanpanah A, Franceschi M, Revilla R I, et al. Revealing the stress corrosion cracking initiation mechanism of alloy 718 prepared by laser powder bed fusion assessed by microcapillary method [J]. Corros. Sci., 2022, 208: 110642
|
| [29] |
Yoo J, Kim S, Jo M C, et al. Investigation of hydrogen embrittlement properties of Ni-based alloy 718 fabricated via laser powder bed fusion [J]. Int. J. Hydrogen Energy, 2022, 47: 18892
|
| [30] |
Xu J J, Hao Z Q, Fu Z H, et al. Hydrogen embrittlement behavior of selective laser-melted Inconel 718 alloy [J]. J. Mater. Res. Technol., 2023, 23: 359
|
| [31] |
Kaynak Y, Tascioglu E. Finish machining-induced surface roughness, microhardness and XRD analysis of selective laser melted inconel 718 alloy [J]. Proc CIRP, 2018, 71: 500
|
| [32] |
Chen S Y, Yang X, Dahmen K A, et al. Microstructures and crackling noise of AlxNbTiMoV high entropy alloys [J]. Entropy, 2014, 16: 870
|
| [33] |
Cao Y. Study on the evolution mechanismof grain boundary charicteristics and precipitates of IN718 alloy fabricated by laser additive manufacturing [D]. Hohhot: Inner Mongolia University of Technology, 2021
|
| [33] |
曹 宇. 激光增材制造IN718合金晶界特征及析出相演变规律研究 [D]. 呼和浩特: 内蒙古工业大学, 2021
|
| [34] |
Newell D J, O'Hara R P, Cobb G R, et al. Mitigation of scan strategy effects and material anisotropy through supersolvus annealing in LPBF IN718 [J]. Mater. Sci. Eng., 2019, A764: 138230
|
| [35] |
Trosch T, Strößner J, Völkl R, et al. Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting [J]. Mater. Lett., 2016, 164: 428
|
| [36] |
Sun X. IN718 powder characteristics used in selective laser melting and microstructures of selective laser melted IN718 sample [D]. Chongqing: Chongqing University, 2014
|
| [36] |
孙 骁. 选区激光成形用IN718合金粉末特性及成形件组织结构的研究 [D]. 重庆: 重庆大学, 2014
|
| [37] |
Chen W, Chaturvedi M C. On the mechanism of serrated deformation in aged Inconel 718 [J]. Mater. Sci. Eng., 1997, A229: 163
|
| [38] |
Pink E, Grinberg A. Stress drops in serrated flow curves of A15Mg [J]. Acta Metall., 1982, 30: 2153
|
| [39] |
Jiang H F, Zhang Q C, Chen X D, et al. Three types of Portevin-Le Chatelier effects: Experiment and modelling [J]. Acta Mater., 2007, 55: 2219
|
| [40] |
Rodriguez P. Serrated plastic flow [J]. Bull. Mater. Sci., 1984, 6: 653
|
| [41] |
Han G M, Cui C Y, Gu Y F, et al. Investigation of temperature dependence of PLC effect in a nickel base superalloy [J]. Acta Metall. Sin., 2013, 49: 1243
|
| [41] |
韩国明, 崔传勇, 谷月峰 等. 一种镍基高温合金PLC效应的温度依赖性研究 [J]. 金属学报, 2013, 49: 1243
|
| [42] |
Qian K W, Li X Q, Xiao L G, et al. Dynamic strain aging phenomenon in metals and alloys [J]. J. Fuzhou Univ. Nat. Sci. Ed., 2001, 29(6): 8
|
| [42] |
钱匡武, 李效琦, 萧林钢 等. 金属和合金中的动态应变时效现象 [J]. 福州大学学报(自然科学版), 2001, 29(6): 8
|
| [43] |
Sang L J, Lu J X, Wang J, et al. In-situ SEM study of temperature-dependent tensile behavior of Inconel 718 superalloy [J]. J. Mater. Sci., 2021, 56: 16097
|
| [44] |
Tian S G, Wang X, Xie J, et al. Characteristic and mechanism of phase transformation of GH4169G alloy during heat treatment [J]. Acta Metall. Sin., 2013, 49: 845
|
| [44] |
田素贵, 王 欣, 谢 君, 等. GH4169G合金热处理期间的相转变特征与机理分析 [J]. 金属学报, 2013, 49: 845
|
| [45] |
McLouth T D, Witkin D B, Lohser J R, et al. Temperature and strain-rate dependence of the elevated temperature ductility of Inconel 718 prepared by selective laser melting [J]. Mater. Sci. Eng., 2021, A824: 141814
|
| [46] |
Sampath D, Obasi G, Morana R, et al. Hydrogen-assisted cracking behavior of Ni alloy 718: Microstructure, H testing protocol, and fractography [J]. Metall. Mater. Trans., 2021, 52A: 46
|
| [47] |
Cozar R, Pineau A. Morphology of γ' and γ'' precipitates and thermal stability of INCONEL 718 type alloys [J]. Metall. Trans., 1973, 4: 47
|
| [48] |
Rong Y H, Chen S P, Hu G X, et al. Prediction and characterization of variant electron diffraction patterns for γ″ and δ precipitates in an Inconel 718 alloy [J]. Metall. Mater. Trans., 1999, 30A: 2297
|
| [49] |
Du J H, Bi Z N, Qu J L. Recent development of triple melt GH4169 alloy [J]. Acta Metall. Sin., 2023, 59: 1159
|
| [49] |
杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展 [J]. 金属学报, 2023, 59: 1159
|
| [50] |
Ghaemifar S, Mirzadeh H. Dissolution kinetics of Laves phase during homogenization heat treatment of additively manufactured Inconel 718 superalloy [J]. J. Mater. Res. Technol., 2023, 24: 3491
|
| [51] |
Cao G H, Sun T Y, Wang C H, et al. Investigations of γ′, γ″ and δ precipitates in heat-treated Inconel 718 alloy fabricated by selective laser melting [J]. Mater. Charact., 2018, 136: 398
|
| [52] |
Liu Y C, Guo Q Y, Li C, et al. Recent progress on evolution of precipitates in Inconel 718 superalloy [J]. Acta Metall. Sin., 2016, 52: 1259
|
| [52] |
刘永长, 郭倩颖, 李 冲 等. Inconel718高温合金中析出相演变研究进展 [J]. 金属学报, 2016, 52: 1259
|
| [53] |
Luo S C, Huang W P, Yang H H, et al. Microstructural evolution and corrosion behaviors of Inconel 718 alloy produced by selective laser melting following different heat treatments [J]. Addit. Manuf., 2019, 30: 100875
|
| [54] |
Bai X, Fang W, Chang R B, et al. Effects of Al and Ti additions on precipitation behavior and mechanical properties of Co35Cr25-Fe40 - x Ni x TRIP high entropy alloys [J]. Mater. Sci. Eng., 2019, A767: 138403
|
| [55] |
Dong Z C, Ouyang P X, Zhang S T, et al. Effect of building direction on anisotropy of mechanical properties of GH4169 alloy fabricated by laser powder bed fusion [J]. Mater. Sci. Eng., 2023, A862: 144430
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|