Please wait a minute...
金属学报  2025, Vol. 61 Issue (12): 1829-1844    DOI: 10.11900/0412.1961.2024.00075
  研究论文 本期目录 | 过刊浏览 |
选区激光熔化GH4169高温合金的微观组织和力学性能
孙勇飞1,2, 向超2(), 张涛2, 吴文伟1,2, 邹志航2, 刘金鹏2, 孙桂芳2,3(), 蒲吉斌4, 韩恩厚2,5
1 广州大学 物理与材料科学学院 广州 510006
2 广东腐蚀科学与技术创新研究院 广州 510530
3 东南大学 机械工程学院 南京 211189
4 中国科学院宁波材料技术与工程研究所 海洋关键材料全国重点实验室 宁波 315201
5 华南理工大学 材料科学与工程学院 广州 510641
Microstructures and Mechanical Properties of GH4169 Superalloy Manufactured by Selective Laser Melting
SUN Yongfei1,2, XIANG Chao2(), ZHANG Tao2, WU Wenwei1,2, ZOU Zhihang2, LIU Jinpeng2, SUN Guifang2,3(), PU Jibin4, HAN En-Hou2,5
1 School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
2 Institute of Corrosion Science and Technology, Guangzhou 510530, China
3 School of Mechanical Engineering, Southeast University, Nanjing 211189, China
4 State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
5 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
引用本文:

孙勇飞, 向超, 张涛, 吴文伟, 邹志航, 刘金鹏, 孙桂芳, 蒲吉斌, 韩恩厚. 选区激光熔化GH4169高温合金的微观组织和力学性能[J]. 金属学报, 2025, 61(12): 1829-1844.
Yongfei SUN, Chao XIANG, Tao ZHANG, Wenwei WU, Zhihang ZOU, Jinpeng LIU, Guifang SUN, Jibin PU, En-Hou HAN. Microstructures and Mechanical Properties of GH4169 Superalloy Manufactured by Selective Laser Melting[J]. Acta Metall Sin, 2025, 61(12): 1829-1844.

全文: PDF(9010 KB)   HTML
摘要: 

GH4169材料广泛应用于航空航天、核电和石油化工等领域,传统加工方式难以满足复杂结构零件的高性能及快速制造需求,选区激光熔化(SLM)提供了一种新的制造方法。SLM成型过程中的高温度梯度和高冷却速率与传统制造方法显著不同,有必要对热处理后SLM成型GH4169高温合金的微观组织演变和力学性能进行研究。本工作采用SLM技术制备GH4169高温合金,分析讨论了打印态以及直接时效和固溶时效热处理后GH4169高温合金的微观组织和力学性能,通过不同热处理状态合金的相结构分析,建立显微组织与力学性能的构效关系。结果表明,打印态合金组织主要以γ基体和Laves相为主;直接时效后基体内部有γ′/γ″相析出;固溶时效后Laves相发生溶解,有大量尺寸小于1 μm的δ相析出,并均匀分布在晶内和晶界,基体内部γ′/γ″相分布更加均匀。SLM成型GH4169高温合金的显微硬度为311 HV,室温抗拉强度为961 MPa,屈服强度为649 MPa。热处理后,合金的硬度和强度均显著提升,其中固溶时效态合金的显微硬度为518 HV,室温抗拉强度为1393 MPa,屈服强度为1233 MPa,高于对应的锻件材料。550、650和750 ℃高温拉伸性能结果表明,热处理态样品在650 ℃的高温强度满足相应锻件标准。由于SLM成型过程中的温度梯度大、冷却速率高,制备的GH4169试样具有精细的胞状和柱状枝晶结构,晶粒尺寸小,位错密度高,热处理后有γ′/γ″强化相析出,由细晶强化、位错强化和沉淀强化作用机制共同提高了GH4169高温合金的力学性能。

关键词 选区激光熔化GH4169热处理微观组织力学性能    
Abstract

GH4169 materials are widely used in aerospace, nuclear power, petrochemical, and other industries. However, conventional processing methods fail to meet the demands of high-performance and rapid manufacturing for complex structural parts. Therefore, selective laser melting (SLM) has been adopted as a new rapid manufacturing technology to address these demands. The high-temperature gradient and rapid cooling rate generated during SLM result in a considerably different microstructure in the GH4169 alloy compared with those produced via conventional melting and forging methods. Consequently, heat treatment is an essential post-processing step to enhance the precipitation strengthening of the GH4169 superalloy. Thus, it is critical to examine the microstructure and mechanical properties of the SLM-formed GH4169 alloy after heat treatment. This study focuses on fabricating the GH4169 alloy using SLM technology and investigates the microstructure and mechanical properties of the as-built, directly aged, and solution-aged GH4169 alloy specimens. Results reveal that the as-built structures primarily comprise a γ matrix and Laves phase. After direct aging, the γ′/γ″ phase precipitates within the matrix. After solution aging, the Laves phase completely dissolves. Moreover, the δ phase precipitates with a size of < 1 μm become abundant and uniformly distributed within grains and grain boundaries. Simultaneously, the γ′/γ″ phase precipitate within the matrix, resulting in a more homogeneous distribution. The microhardness, tensile strength, and yield strength at room temperature (25 oC) of the SLM GH4169 alloy are 311 HV, 961 MPa, and 649 MPa, respectively. Heat treatment substantially improves the hardness and strength of the material. In the solution-aged state, the microhardness reaches 518 HV, with a tensile strength of 1393 MPa and a yield strength of 1233 MPa at room temperature. Notably, these static mechanical properties surpass those of the corresponding forged materials. The tensile properties at 550, 650, and 750 oC indicate that the elevated strength of the heat-treated samples at 650 oC complies with relevant forging standards. Owing to the substantial temperature gradient and rapid cooling rate during the SLM forming process, the GH4169 sample exhibits a refined cellular and columnar dendritic structure, small grain size, and high dislocation density. Subsequent heat treatment induces γ′/γ″ phase precipitation, enhancing the mechanical properties of the GH4169 alloy through fine crystal strengthening, dislocation strengthening, and precipitation strengthening.

Key wordsselective laser melting    GH4169    heat treatment    microstructure    mechanical property
收稿日期: 2024-03-12     
ZTFLH:  TG146.1  
基金资助:广东腐蚀科学与技术创新研究院青年创新基金项目(E1551601);海洋关键材料全国重点实验室开放课题项目(2024Z02)
通讯作者: 向超,cxiang@icost.ac.cn,主要从事高性能金属材料增材制造技术研究; 孙桂芳,gfsun@seu.edu.cn,主要从事特殊环境氛围(水下)激光增材制造理论、技术研究
Corresponding author: XIANG Chao, Tel: (020)22309456, E-mail: cxiang@icost.ac.cn; SUN Guifang, professor, Tel: (025)52090501, E-mail: gfsun@seu.edu.cn
作者简介: 孙勇飞,男,1998年生,硕士生
图1  GH4169高温合金粉末形貌及粒度分布
图2  拉伸试棒加工尺寸
StateSolutionAging
ABNoneNone
DANone720 oC for 8 h, furnace
cooling to 620 oC;
620 oC for 8 h, air cooling
SA980 oC for 1 h,720 oC for 8 h, furnace
air coolingcooling to 620 oC;
620 oC for 8 h, air cooling
表1  热处理工艺参数
图3  GH4169高温合金打印态(AB)、直接时效(DA)和固溶+时效(SA)试样的XRD谱
IntergranularABDASA
spacing
(111)0.207970.207880.20765
(200)0.180240.180020.17994
(220)0.127290.127280.12711
(311)0.108560.108540.10840
(222)0.103880.103690.10375
表2  AB、DA和SA试样中奥氏体晶面间距 (nm)
图4  GH4169高温合金AB、DA和SA试样显微组织的OM像
图5  GH4169高温合金AB、DA和SA试样显微组织的SEM像
图6  GH4169高温合金AB、DA和SA试样的EPMA面扫描结果
图7  GH4169高温合金AB、DA和SA试样的反极图(IPF)面分布图
SurfaceStateTransverse size / μmLongitudinal size / μmAspect ratio
XOYAB10.078.351.21
DA11.879.341.27
SA11.069.751.13
XOZAB9.6916.660.58
DA9.4016.010.59
SA11.0319.710.56
表3  GH4169高温合金AB、DA和SA试样的晶粒尺寸
StateYield strength / MPaTensile strength / MPaElongation after fracture / %
AB654 ± 11961 ± 233.2 ± 1.6
DA1283 ± 241443 ± 115.0 ± 1.8
SA1238 ± 61393 ± 218.0 ± 1.8
Forged[35]1192138019.1
AMS 5663 standards1034127612.0
表4  GH4169高温合金的室温拉伸性能
图8  GH4169高温合金AB、DA和SA试样室温拉伸断口形貌的SEM像
图9  GH4169高温合金AB、DA和SA试样的高温工程应力-应变曲线
Temperature / oCStateYield strength / MPaTensile strength / MPaElongation after fracture / %
550AB582 ± 20836 ± 129.9 ± 2.7
DA1100 ± 661263 ± 111.9 ± 0.1
SA1111 ± 281195 ± 114.0 ± 0.6
650AB677 ± 4863 ± 1030.9 ± 1.4
DA949 ± 81158 ± 19.1 ± 0.6
SA999 ± 41129 ± 19.7 ± 0.8
AMS 5663 standard862100012
750AB656 ± 36837 ± 257.8 ± 1.0
DA635 ± 5825 ± 67.8 ± 1.1
SA684 ± 6850 ± 14.9 ± 0.8
表5  GH4169高温合金的高温拉伸性能
图10  GH4169高温合金AB、DA和SA试样高温拉伸断口形貌的SEM像
图11  GH4169高温合金AB、DA和SA试样胞状结构的TEM明场像
图12  GH4169高温合金AB、DA和SA试样胞状结构的高角环形暗场(HAADF)像及EDS面扫描图
图13  AB、DA、SA试样基体和Laves相的TEM明场像及其SAED花样
图14  DA和SA试样的TEM明场像和[001]带轴SAED花样,及试样斑点TEM暗场像
图15  GH4169高温合金AB、DA和SA试样的微观组织演变示意图
[1] Wang L, Lu B H. Development of additive manufacturing technology and industry in China [J]. Strategic Study CAE, 2022, 24(4): 202
[1] 王 磊, 卢秉恒. 我国增材制造技术与产业发展研究 [J]. 中国工程科学, 2022, 24(4): 202
[2] Sui S, Tan H, Chen J, et al. The influence of Laves phases on the room temperature tensile properties of Inconel 718 fabricated by powder feeding laser additive manufacturing [J]. Acta Mater., 2019, 164: 413
[3] Huang W P. Microstructure and mechanical property control of GH4169 superalloy produced by selective laser melting [D]. Wuhan: Huazhong University of Science and Technology, 2021
[3] 黄文普. 激光选区熔化成形GH4169合金的组织与性能调控 [D]. 武汉: 华中科技大学, 2021
[4] Song B, Zhang J L, Zhang Y J, et al. Research progress of materials design for metal laser additive manufacturing [J]. Acta Metall. Sin., 2023, 59: 1
[4] 宋 波, 张金良, 章媛洁 等. 金属激光增材制造材料设计研究进展 [J]. 金属学报, 2023, 59: 1
[5] Zhao Y N, Guo Q Y, Ma Z Q, et al. Comparative study on the microstructure evolution of selective laser melted and wrought IN718 superalloy during subsequent heat treatment process and its effect on mechanical properties [J]. Mater. Sci. Eng., 2020, A791: 139735
[6] Zhang H, Yang K. Overview of the present situation and application of additive manufacturing [J]. Packag. Eng., 2021, 42(16): 9
[6] 张 衡, 杨 可. 增材制造的现状与应用综述 [J]. 包装工程, 2021, 42(16): 9
[7] Yang H, Li Y, Hao J M. Research progress of laser additively manufactured Inconel 718 superalloy [J]. Mater. Rep., 2022, 36(6): 20080021
[7] 杨 浩, 李 尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展 [J]. 材料导报, 2022, 36(6): 20080021
[8] Li F Z. Overview of the development and application of China's additive manufacturing industry [J]. Ind. Technol. Innovation, 2017, 4(4): 1
[8] 李方正. 中国增材制造产业发展及应用情况综述 [J]. 工业技术创新, 2017, 4(4): 1
[9] Li R F, Li K, Zhou W Z. Research progress in laser metal 3D printing technology [J]. Adhesion, 2022, 49(7): 98
[9] 李瑞锋, 李 客, 周伟召. 激光金属3D打印技术的研究进展 [J]. 粘接, 2022, 49(7): 98
[10] Yang Q, Lu Z L, Huang F X, et al. Research on status and development trend of laser additive manufacturing [J]. Aviat. Manuf. Technol., 2016, (12): 26
[10] 杨 强, 鲁中良, 黄福享 等. 激光增材制造技术的研究现状及发展趋势 [J]. 航空制造技术, 2016, (12): 26
[11] Ni L. Study on heat treatment process and mechanical properties of selective laser melting GH4169 alloy [D]. Zhenjiang: Jiangsu University, 2022
[11] 倪 磊. 激光选区熔化GH4169合金的热处理工艺与力学性能研究 [D]. 镇江: 江苏大学, 2022
[12] Bera T, Mohanty S. A review on residual stress in metal additive manufacturing [J]. 3D Print. Addit. Manuf., 2024, 11: 1462
[13] Kizhakkinan U, Seetharaman S, Raghavan N, et al. Laser powder bed fusion additive manufacturing of maraging steel: A review [J]. J. Manuf. Sci. Eng., 2023, 145: 110801
[14] Kwabena Adomako N, Haghdadi N, Primig S. Electron and laser-based additive manufacturing of Ni-based superalloys: A review of heterogeneities in microstructure and mechanical properties [J]. Mater. Des., 2022, 223: 111245
[15] Le W, Chen Z W, Naseem S, et al. Study on the microstructure evolution and dynamic recrystallization mechanism of selective laser melted Inconel 718 alloy during hot deformation [J]. Vacuum, 2023, 209: 111799
[16] Hosseini E, Popovich V A. A review of mechanical properties of additively manufactured Inconel 718 [J]. Addit. Manuf., 2019, 30: 100877
[17] Wang Y, Guo W, Zheng H, et al. Microstructure, crack formation and improvement on nickel-based superalloy fabricated by powder bed fusion [J]. J. Alloys Compd., 2023, 962: 171151
[18] Ni M, Chen C, Wang X J, et al. Anisotropic tensile behavior of in situ precipitation strengthened Inconel 718 fabricated by additive manufacturing [J]. Mater. Sci. Eng., 2017, A701: 344
[19] Aydinöz M E, Brenne F, Schaper M, et al. On the microstructural and mechanical properties of post-treated additively manufactured Inconel 718 superalloy under quasi-static and cyclic loading [J]. Mater. Sci. Eng., 2016, A669: 246
[20] Fayed E M, Saadati M, Shahriari D, et al. Effect of homogenization and solution treatments time on the elevated-temperature mechanical behavior of Inconel 718 fabricated by laser powder bed fusion [J]. Sci. Rep., 2021, 11: 2020
[21] Cao M, Zhang D Y, Gao Y, et al. The effect of homogenization temperature on the microstructure and high temperature mechanical performance of SLM-fabricated IN718 alloy [J]. Mater. Sci. Eng., 2021, A801: 140427
[22] Ni M, Liu S C, Chen C, et al. Effect of heat treatment on the microstructural evolution of a precipitation-hardened superalloy produced by selective laser melting [J]. Mater. Sci. Eng., 2019, A748: 275
[23] Huang W P, Yang J J, Yang H H, et al. Heat treatment of Inconel 718 produced by selective laser melting: Microstructure and mechanical properties [J]. Mater. Sci. Eng., 2019, A750: 98
[24] Švec M, Solfronk P, Nováková I, et al. Comparison of the structure, mechanical properties and effect of heat treatment on alloy Inconel 718 produced by conventional technology and by additive layer manufacturing [J]. Materials, 2023, 16: 5382
[25] Amato K N, Gaytan S M, Murr L E, et al. Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting [J]. Acta Mater., 2012, 60: 2229
[26] Liu B, Ding Y T, Xu J Y, et al. Outstanding strength-ductility synergy in Inconel 718 superalloy via laser powder bed fusion and thermomechanical treatment [J]. Addit. Manuf., 2023, 67: 103491
[27] Feng K Y, Liu P, Li H X, et al. Microstructure and phase transformation on the surface of Inconel 718 alloys fabricated by SLM under 1050 oC solid solution + double ageing [J]. Vacuum, 2017, 145: 112
[28] Yazdanpanah A, Franceschi M, Revilla R I, et al. Revealing the stress corrosion cracking initiation mechanism of alloy 718 prepared by laser powder bed fusion assessed by microcapillary method [J]. Corros. Sci., 2022, 208: 110642
[29] Yoo J, Kim S, Jo M C, et al. Investigation of hydrogen embrittlement properties of Ni-based alloy 718 fabricated via laser powder bed fusion [J]. Int. J. Hydrogen Energy, 2022, 47: 18892
[30] Xu J J, Hao Z Q, Fu Z H, et al. Hydrogen embrittlement behavior of selective laser-melted Inconel 718 alloy [J]. J. Mater. Res. Technol., 2023, 23: 359
[31] Kaynak Y, Tascioglu E. Finish machining-induced surface roughness, microhardness and XRD analysis of selective laser melted inconel 718 alloy [J]. Proc CIRP, 2018, 71: 500
[32] Chen S Y, Yang X, Dahmen K A, et al. Microstructures and crackling noise of AlxNbTiMoV high entropy alloys [J]. Entropy, 2014, 16: 870
[33] Cao Y. Study on the evolution mechanismof grain boundary charicteristics and precipitates of IN718 alloy fabricated by laser additive manufacturing [D]. Hohhot: Inner Mongolia University of Technology, 2021
[33] 曹 宇. 激光增材制造IN718合金晶界特征及析出相演变规律研究 [D]. 呼和浩特: 内蒙古工业大学, 2021
[34] Newell D J, O'Hara R P, Cobb G R, et al. Mitigation of scan strategy effects and material anisotropy through supersolvus annealing in LPBF IN718 [J]. Mater. Sci. Eng., 2019, A764: 138230
[35] Trosch T, Strößner J, Völkl R, et al. Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting [J]. Mater. Lett., 2016, 164: 428
[36] Sun X. IN718 powder characteristics used in selective laser melting and microstructures of selective laser melted IN718 sample [D]. Chongqing: Chongqing University, 2014
[36] 孙 骁. 选区激光成形用IN718合金粉末特性及成形件组织结构的研究 [D]. 重庆: 重庆大学, 2014
[37] Chen W, Chaturvedi M C. On the mechanism of serrated deformation in aged Inconel 718 [J]. Mater. Sci. Eng., 1997, A229: 163
[38] Pink E, Grinberg A. Stress drops in serrated flow curves of A15Mg [J]. Acta Metall., 1982, 30: 2153
[39] Jiang H F, Zhang Q C, Chen X D, et al. Three types of Portevin-Le Chatelier effects: Experiment and modelling [J]. Acta Mater., 2007, 55: 2219
[40] Rodriguez P. Serrated plastic flow [J]. Bull. Mater. Sci., 1984, 6: 653
[41] Han G M, Cui C Y, Gu Y F, et al. Investigation of temperature dependence of PLC effect in a nickel base superalloy [J]. Acta Metall. Sin., 2013, 49: 1243
[41] 韩国明, 崔传勇, 谷月峰 等. 一种镍基高温合金PLC效应的温度依赖性研究 [J]. 金属学报, 2013, 49: 1243
[42] Qian K W, Li X Q, Xiao L G, et al. Dynamic strain aging phenomenon in metals and alloys [J]. J. Fuzhou Univ. Nat. Sci. Ed., 2001, 29(6): 8
[42] 钱匡武, 李效琦, 萧林钢 等. 金属和合金中的动态应变时效现象 [J]. 福州大学学报(自然科学版), 2001, 29(6): 8
[43] Sang L J, Lu J X, Wang J, et al. In-situ SEM study of temperature-dependent tensile behavior of Inconel 718 superalloy [J]. J. Mater. Sci., 2021, 56: 16097
[44] Tian S G, Wang X, Xie J, et al. Characteristic and mechanism of phase transformation of GH4169G alloy during heat treatment [J]. Acta Metall. Sin., 2013, 49: 845
[44] 田素贵, 王 欣, 谢 君, 等. GH4169G合金热处理期间的相转变特征与机理分析 [J]. 金属学报, 2013, 49: 845
[45] McLouth T D, Witkin D B, Lohser J R, et al. Temperature and strain-rate dependence of the elevated temperature ductility of Inconel 718 prepared by selective laser melting [J]. Mater. Sci. Eng., 2021, A824: 141814
[46] Sampath D, Obasi G, Morana R, et al. Hydrogen-assisted cracking behavior of Ni alloy 718: Microstructure, H testing protocol, and fractography [J]. Metall. Mater. Trans., 2021, 52A: 46
[47] Cozar R, Pineau A. Morphology of γ' and γ'' precipitates and thermal stability of INCONEL 718 type alloys [J]. Metall. Trans., 1973, 4: 47
[48] Rong Y H, Chen S P, Hu G X, et al. Prediction and characterization of variant electron diffraction patterns for γ″ and δ precipitates in an Inconel 718 alloy [J]. Metall. Mater. Trans., 1999, 30A: 2297
[49] Du J H, Bi Z N, Qu J L. Recent development of triple melt GH4169 alloy [J]. Acta Metall. Sin., 2023, 59: 1159
[49] 杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展 [J]. 金属学报, 2023, 59: 1159
[50] Ghaemifar S, Mirzadeh H. Dissolution kinetics of Laves phase during homogenization heat treatment of additively manufactured Inconel 718 superalloy [J]. J. Mater. Res. Technol., 2023, 24: 3491
[51] Cao G H, Sun T Y, Wang C H, et al. Investigations of γ′, γ″ and δ precipitates in heat-treated Inconel 718 alloy fabricated by selective laser melting [J]. Mater. Charact., 2018, 136: 398
[52] Liu Y C, Guo Q Y, Li C, et al. Recent progress on evolution of precipitates in Inconel 718 superalloy [J]. Acta Metall. Sin., 2016, 52: 1259
[52] 刘永长, 郭倩颖, 李 冲 等. Inconel718高温合金中析出相演变研究进展 [J]. 金属学报, 2016, 52: 1259
[53] Luo S C, Huang W P, Yang H H, et al. Microstructural evolution and corrosion behaviors of Inconel 718 alloy produced by selective laser melting following different heat treatments [J]. Addit. Manuf., 2019, 30: 100875
[54] Bai X, Fang W, Chang R B, et al. Effects of Al and Ti additions on precipitation behavior and mechanical properties of Co35Cr25-Fe40 - x Ni x TRIP high entropy alloys [J]. Mater. Sci. Eng., 2019, A767: 138403
[55] Dong Z C, Ouyang P X, Zhang S T, et al. Effect of building direction on anisotropy of mechanical properties of GH4169 alloy fabricated by laser powder bed fusion [J]. Mater. Sci. Eng., 2023, A862: 144430
[1] 张天宇, 张鹏, 肖娜, 王小海, 刘国强, 杨志刚, 张弛. 奥氏体化温度对2 GPa超高强钢显微组织和力学性能的影响[J]. 金属学报, 2025, 61(9): 1353-1363.
[2] 王洪瑛, 姚志浩, 李大禹, 郭婧, 姚凯俊, 董建新. γ' 相含量粉末及变形高温合金组织和力学性能的异同性[J]. 金属学报, 2025, 61(9): 1364-1374.
[3] 吴志勇, 邵徽凡, 蔡长春, 曾敏, 王振军, 王艳丽, 陈雷, 熊博文. 斜纹碳布缝合织物结构增强铝基复合材料的高温拉伸及断裂行为[J]. 金属学报, 2025, 61(9): 1387-1402.
[4] 杨帆, 裴世超, 罗新蕊, 陈宇翔, 李宁宇, 常永勤. 6061铝合金搅拌摩擦增材制造显微组织演变及力学性能[J]. 金属学报, 2025, 61(8): 1129-1140.
[5] 肖文龙, 臧晨阳, 郭锦涛, 冯佳文, 马朝利. 基于原位电阻法的7A65铝合金厚板双级时效工艺[J]. 金属学报, 2025, 61(8): 1153-1164.
[6] 吴泽威, 颜俊雄, 胡励, 韩修柱. 双峰分离非基面织构AZ31镁合金板材反常中温轧制变形行为及机理[J]. 金属学报, 2025, 61(8): 1165-1173.
[7] 张洺川, 徐勤思, 刘意, 蔡雨升, 牟义强, 任德春, 吉海宾, 雷家峰. 热压温度对TC4合金扩散连接区组织与性能的影响[J]. 金属学报, 2025, 61(8): 1183-1192.
[8] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 谷金波. 喷射成形工艺对M3高速钢碳化物特征及力学性能的影响[J]. 金属学报, 2025, 61(8): 1229-1244.
[9] 谢旭, 万一博, 钟明, 邹晓东, 王聪. CaF2-TiO2 焊剂作用下EH36船板钢气电立焊焊缝金属组织优化及力学性能调控[J]. 金属学报, 2025, 61(7): 998-1010.
[10] 孙欢腾, 马运柱, 蔡青山, 王健宁, 段有腾, 张梦祥. fccbcc钢板在超高速撞击下的微观组织差异[J]. 金属学报, 2025, 61(7): 1011-1023.
[11] 谢昂, 陈胜虎, 姜海昌, 戎利建. Nb含量和均质化处理对奥氏体不锈钢铸态组织和力学性能的影响[J]. 金属学报, 2025, 61(7): 1035-1048.
[12] 葛蓬华, 张勇, 李志明. 异构FeCoNi中熵合金的软磁与力学行为[J]. 金属学报, 2025, 61(7): 1119-1128.
[13] 郝旭邦, 程伟丽, 李戬, 王利飞, 崔泽琴, 闫国庆, 翟凯, 余晖. 低合金化Mg-Ag镁空气电池阳极材料的电化学行为和放电性能[J]. 金属学报, 2025, 61(6): 837-847.
[14] 刘子儒, 郭乾应, 张虹雨, 刘永长. V添加对Ti2AlNb合金组织演变及硬度的影响[J]. 金属学报, 2025, 61(6): 848-856.
[15] 钦兰云, 张健, 伊俊振, 崔岩峰, 杨光, 王超. 固溶时效对激光沉积修复ZM6合金组织及力学性能的影响[J]. 金属学报, 2025, 61(6): 875-886.