金属学报, 2025, 61(8): 1165-1173 DOI: 10.11900/0412.1961.2023.00429

研究论文

双峰分离非基面织构AZ31镁合金板材反常中温轧制变形行为及机理

吴泽威1, 颜俊雄1, 胡励,1, 韩修柱,2

1.重庆理工大学 材料科学与工程学院 重庆 400054

2.北京空间飞行器总体设计部 北京 100094

Abnormal Rolling Behavior and Deformation Mechanisms of Bimodal Non-Basal Texture AZ31 Magnesium Alloy Sheet at Medium Temperature

WU Zewei1, YAN Junxiong1, HU Li,1, HAN Xiuzhu,2

1.College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China

2.Beijing Institute of Spacecraft System Engineering, Beijing 100094, China

通讯作者: 胡 励,huli@cqut.edu.cn,主要从事镁合金板材特种塑性加工及变形行为研究;韩修柱,xiuzhuhan@163.com,主要从事镁合金复合板材的特种轧制工艺及变形行为研究

责任编辑: 肖素红

收稿日期: 2023-10-26   修回日期: 2024-03-19  

基金资助: 国家自然科学基金项目(52275308)
重庆市博士后研究项目(2021XM1022)
重庆理工大学科研创新团队培育计划项目(2023TDZ010)
重庆理工大学校级研究生创新项目(gzlcx20232001)

Corresponding authors: HU Li, associate professor, Tel: 17358428920, E-mail:huli@cqut.edu.cn;HAN Xiuzhu, professor, Tel: 13391570360, E-mail:xiuzhuhan@163.com

Received: 2023-10-26   Revised: 2024-03-19  

Fund supported: National Natural Science Foundation of China(52275308)
Special Funded Project of Chongqing Postdoctoral Research Program(2021XM1022)
Cultivation Plan of Scientific Research and Innovation Team of Chongqing University of Technology(2023TDZ010)
Postgraduate Research Innovation of Chongqing University of Technology(gzlcx20232001)

作者简介 About authors

吴泽威,男,1999年生,硕士生

摘要

双峰分离非基面织构AZ31镁合金板材的室温轧制性能较传统基面织构AZ31镁合金板材提升显著,但其中温轧制性能尚不明晰。为揭示双峰分离非基面织构AZ31镁合金板材的中温(200 ℃)轧制变形行为及机理,利用EBSD技术,系统研究了基面织构和双峰分离非基面织构AZ31镁合金板材在200 ℃多道次轧制变形过程中的微观组织特征。结果表明,双峰分离非基面织构AZ31镁合金板材在中温条件下的轧制性能相较于基面织构板材仅有微小提升,双峰分离非基面织构板材经过五道次轧制后出现边裂现象,其累积压下量为48.0%;基面织构板材经过四道次轧制后出现边裂现象,其累积压下量为43.6%。基面织构板材在轧制变形过程中会激发大量的基面<a>位错和非基面位错(包括柱面<a>位错和锥面<c + a>位错),以及少量的{101¯1}-{101¯2}二次孪生,进而在晶界和孪晶界位置发生明显的动态再结晶,相应的再结晶体积分数高达47.9%。双峰分离非基面织构板材在轧制变形初期除了激活高密度的位错,亦会激发大量的{101¯2}拉伸孪晶来承载塑性应变。随着轧制道次增加,{101¯2}拉伸孪晶界向晶粒基体区域迁移的同时吸收大量位错,这会降低变形晶粒内的位错密度,进而延缓动态再结晶的发生,导致双峰分离非基面织构板材温轧后的再结晶体积分数仅为11.4%。双峰分离非基面织构板材和基面织构板材在中温条件下区别显著的动态再结晶行为,是导致2者轧制性能接近(累积压下量差异仅为4.4%)的主要原因。

关键词: AZ31镁合金板材; 双峰分离非基面织构; 中温轧制; 变形行为; 微观组织演化

Abstract

An AZ31 magnesium alloy sheet with bimodal non-basal texture exhibits better rolling performance at room temperature compared with that with a typical basal texture. However, the rolling performance of bimodal non-basal texture sheets under medium temperature conditions remains unexplored. Therefore, this study aims to elucidate the rolling behavior and deformation mechanism of bimodal non-basal texture sheets at 200 oC. Employing EBSD characterizations, the microstructural characteristics of rolled sheets with initial basal and bimodal non-basal textures throughout a multipass rolling process were systematically investigated. Results showed that at medium temperature, the rolling performance of sheets with bimodal non-basal texture improved only slightly compared with those with basal texture. Especially, edge cracks were observed in deformed bimodal non-basal texture sheets after the fifth rolling pass, with a corresponding accumulative thickness reduction of approximately 48.0%. In contrast, sheets with basal texture exhibited edge cracks after the fourth rolling pass, with a corresponding accumulative thickness reduction of approximately 43.6%. A large number of basal <a> and non-basal dislocations (including prismatic <a> and pyramidal <c + a> dislocations) as well as a small number of {1011}-{1012} secondary twins were activated during the rolling deformation of basal texture sheets. These dislocations cause extensive dynamic recrystallization (DRX) near grain boundaries and twin interfaces, with the corresponding DRX volume fraction reaching as high as 47.9%. For bimodal non-basal textured sheets, in addition to the activation of high-density dislocations at the beginning of rolling deformation, an extensive {101¯2} extension twins (ETs) were activated to carry plastic strain. With increasing rolling passes, {101¯2} ET boundaries migrated toward the matrix region and absorbed a large number of dislocations, thereby reducing the dislocation density within deformed grains. This phenomenon would delay the DRX onset, resulting in a small DRX volume fraction of approximately 11.4%. The pronounced difference in the DRX behavior between bimodal non-basal texture sheets and basal texture sheets at medium temperature primarily accounts for their similar rolling performance, with mere 4.4% difference in accumulative thickness reduction.

Keywords: AZ31 magnesium alloy sheet; bimodal non-basal texture; warm rolling; deformation behavior; microstructure evolution

PDF (4277KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

吴泽威, 颜俊雄, 胡励, 韩修柱. 双峰分离非基面织构AZ31镁合金板材反常中温轧制变形行为及机理[J]. 金属学报, 2025, 61(8): 1165-1173 DOI:10.11900/0412.1961.2023.00429

WU Zewei, YAN Junxiong, HU Li, HAN Xiuzhu. Abnormal Rolling Behavior and Deformation Mechanisms of Bimodal Non-Basal Texture AZ31 Magnesium Alloy Sheet at Medium Temperature[J]. Acta Metallurgica Sinica, 2025, 61(8): 1165-1173 DOI:10.11900/0412.1961.2023.00429

镁合金在环保和轻量化技术方面日益受到研究人员的重视,尤其在航空航天领域。然而,镁合金具有hcp晶体结构和较强的基面织构,且其在室温下可开动的滑移系较少,从而使得镁合金的强度和塑性较差,这对镁合金的使用和发展造成了极大的限制[1~5]。目前,大部分镁合金板材的加工都是在高温条件下进行的,能源消耗较大。由于Mg的层错能较低,其在高温变形过程中容易发生动态再结晶和晶粒二次长大,进而导致加工制备镁合金板材的晶粒尺寸难以控制[1]。此外,Mg对O具有较高的亲和力,但凭借氧化反应无法在表面形成保护性氧化膜,故镁合金在高温条件的抗氧化性能较差[6]。众多研究[7~11]表明,在中温变形条件下加工制备镁合金板材,可以有效缓解上述问题。

对商用AZ31镁合金板材的中温轧制变形行为已有大量研究。罗晋如等[7]对AZ31镁合金板材进行了不同温度下的轧制实验,发现只有在超过200 ℃的温度下进行轧制时,才会发生再结晶现象,在低于200 ℃轧制时,不同温度下轧制板材中均会出现二次孪生,其数量随轧制温度的升高而降低。Luo等[8]在150 ℃下对AZ31镁合金进行了温轧实验,发现相较于单轴变形条件,在轧制变形过程中,更容易出现30°和38°的二次孪晶变体。刘子健等[9]研究发现,在200 ℃下对AZ31镁合金进行温轧,可以激活大量的非基面滑移,从而大幅度提升镁合金的塑性变形能力。李彦生等[10]对AZ31镁合金进行了多道次温轧,发现经过五道次轧制后,晶粒尺寸从初始的38 μm细化至2.2 μm。Jia等[11]研究了在233~248 ℃范围内进行多道次温轧后AZ31镁合金板材的微观组织和织构演变,发现在多道次轧制变形后期出现了动态再结晶晶粒,导致平均晶粒尺寸大幅下降。

Tu等[12]通过等径角轧制-连续弯曲-退火工艺(equal channel angular rolling and continuous bending process with subsequent annealing,简称ECAR-CB-A工艺),成功制备出具有双峰分离非基面织构特征的AZ31镁合金板材,显著改善了AZ31镁合金板材在室温下的成形性能,将室温Erichsen值显著提升至7.4 mm。这表明在中温条件下,双峰分离非基面织构AZ31镁合金板材有望获得优于传统基面织构板材的轧制性能。在上述研究中,采用的板材多为常规基面织构AZ31镁合金板材,针对非基面织构板材中温条件下轧制变形行为的研究还鲜见报道。鉴于此,本工作选取基面织构和双峰分离非基面织构AZ31镁合金板材,在中温(200 ℃)下进行多道次轧制实验,研究不同织构AZ31镁合金板材在中温条件下的轧制变形行为。随后,利用光学显微镜(OM)和电子背散射衍射(EBSD)分析轧制板材的微观组织演化规律,进而揭示双峰分离非基面织构板材中温轧制的变形机理。

1 实验方法

实验采用ECAR-CB-A工艺制备双峰分离非基面织构AZ31镁合金板材,其工艺参数和步骤详见参考文献[12]。本工作还使用热轧态的AZ31镁合金板材作为对照样品。用电火花线切割机慢走丝模式切取标准轧制试样,其尺寸为30 mm (横向,TD) × 50 mm (轧向,RD) × 1.10 mm (法向,ND)。分别将具有基面织构和双峰分离非基面织构的AZ31镁合金板材进行200 ℃多道次轧制变形。轧辊直径为170 mm,转速为600 r/min,轧制道次间均加热保温3 min。实验中每道次板材厚度变化如表1所示。当轧制板材出现边裂时停止轧制变形,观察板材开裂时的宏观形貌。随后利用DMI5000M型OM和装有HKL-Nordlys MAX探测器(EBSD探头)的NOVA 400场发射扫描电镜(SEM)对轧制样品的微观组织特征进行观察,观察面为RD-TD面。SEM工作电压20 keV,扫描步长0.35 μm。关于OM和EBSD试样的制备方法详见文献[13]。EBSD数据后处理软件为Channel 5。利用Channel 5软件设定{101¯1}压缩孪晶、{101¯2}拉伸孪晶和{101¯1}-{101¯2}二次孪晶的孪晶界取向差角分别为56°、86°和38°,实现孪晶界面的标定以及孪晶结构的选取,从而得到各种孪晶结构的体积分数;利用Channel 5软件得到扫描区域的晶粒取向扩展(grain orientation spread,GOS)图,将其中0°~1°的晶粒定义为再结晶晶粒,实现再结晶晶粒的选取和体积分数计算。

表1   不同织构AZ31镁合金板材中温轧制的厚度变化 (mm)

Table1  Variations of thickness in AZ31 magnesium alloy sheets with different textures during multi-pass rolling process at medium temperature

Sheet typeAs-receivedFirst passSecond passThird passFourth passFifth pass
Basal texture sheet1.101.060.920.780.62-
Bimodal non-basal texture sheet1.101.060.890.820.720.57

新窗口打开| 下载CSV


2 实验结果

图1为双峰分离非基面织构AZ31镁合金板材的微观组织和织构特征。由OM像(图1a)和反极图(IPF) (图1b)可以看出,该初始板材具有等轴晶结构特征,不含孪晶,平均晶粒尺寸为14.04 μm。从局部取向差(kernel average misorientation,KAM)图(图1c)可知,平均KAM值仅为0.248°。这说明板材中几何必需位错密度(geometrically necessary dislocations,GNDs)较低[14,15],为典型的完全退火态板材。此外,(0002)极图(PF) (图1d)呈现出明显的双峰分离非基面织构特征,基极由ND向RD两侧偏转约40°,最大极点强度仅为4.79。

图1

图1   双峰分离非基面织构AZ31镁合金板材的初始微观组织和织构

Fig.1   Initial microstructure and texture of AZ31 magnesium alloy sheet with bimodal non-basal texture

(a) OM image

(b) inverse pole figure (IPF) and statistical analysis of grain size (inset) (ND—normal direction, TD—transverse direction, RD—rolling direction)

(c) kernel average misorientation (KAM) map

(d) (0002) pole figure (PF)


图2为不同织构板材在多道次中温轧制变形过程中出现边裂的宏观照片。双峰分离非基面织构板材在第五道次轧制后出现边裂现象,而基面织构板材在第四道次轧制后出现边裂现象,相应的累积压下量分别为48.0%和43.6%。Han等[16]和陈家明[17]的研究表明,双峰分离非基面织构AZ31镁合金板材在室温多道次轧制变形过程中的累积压下量为39.2%,约为基面织构板材(18.3%)的2.14倍。可见,本工作中双峰分离非基面织构的引入对AZ31镁合金板材在200 ℃中温条件下的轧制成形性能并没有产生显著提升,其累积压下量仅比基面织构板材高出4.4%。为解释这种反常的中温轧制行为,需要对轧制板材的微观组织演化进行进一步研究。

图2

图2   不同织构AZ31镁合金板材在中温制变形过程中出现边裂的宏观照片

Fig.2   Macroscopic photographs showing the occurrence of edge cracks in AZ31 magnesium alloy sheets with different textures during rolling at medium temperature

(a) the fourth pass for basal texture sheet

(b) the fifth pass for bimodal non-basal texture sheet


图34分别为基面织构和双峰分离非基面织构AZ31镁合金板材在中温轧制变形条件下不同轧制道次微观组织的EBSD表征。从IPF (图3a1~c14a1~c1)和晶界(GB)图(图3a2~c24a2~c2)可以看出,基面织构和双峰分离非基面织构AZ31镁合金板材在中温轧制过程中出现了多种孪晶类型。对于基面织构AZ31镁合金板材,随着轧制道次增加,{101¯1}-{101¯2}二次孪晶(secondary twin,ST)的体积分数呈现先增加后减少的演化规律,由第一道次的1.51%增加至第二道次的2.63%,在第四道次时减少为0.41%。{101¯2}拉伸孪晶(extension twin,ET)的体积分数呈现逐渐下降趋势,由第一道次的3.24%减少为第二道次的2.19%,第四道次时进一步减少为0.19%。对于双峰分离非基面织构板材而言,{101¯2}ET始终为主导的孪晶类型,在轧制后期出现了少量的{101¯1}压缩孪晶(compression twin,CT)和{101¯1}-{101¯2}ST。随着轧制道次的增加,{101¯2}ET的体积分数逐渐下降,由第一道次的8.68%降为第二道次的5.35%,第五道次时进一步减少为1.08%。图3a3~c34a3~c3为GOS图。GOS图主要用于区分再结晶晶粒和评估动态再结晶(dynamic recrystallization,DRX)程度[18],其中0°~1°为再结晶晶粒,1°~7.5°为亚晶粒,大于7.5°为变形晶粒。可以看出,随着变形量的增大,板材内部出现明显的再结晶晶粒。虽然此时变形温度低于AZ31镁合金的再结晶温度,但是在大变形条件下,仍能发生DRX[19]。从图3a3、b3图4a3、b3可以看出,在中温轧制的前2个道次,不同织构板材中仅出现少量的再结晶晶粒。然而,随着轧制变形程度的增大,基面织构板材在第四道次的晶粒再结晶程度(图3c3)远高于双峰分离非基面织构板材在第五道次的晶粒再结晶程度(图4c3)。进一步选取上述再结晶晶粒进行分析(图5),发现基面织构板材在第四道次轧制后,其再结晶晶粒体积分数达到47.9% (图5a3),远高于双峰分离非基面织构板材在第五道次后的再结晶晶粒体积分数11.4% (图5b3)。此外,由再结晶晶粒(0002) PF (图5中插图)可以发现,再结晶晶粒的c轴大部分聚集在ND附近,该取向不利于后续轧制变形。

图3

图3   基面织构AZ31镁合金板材中温轧制样品微观结构特征的EBSD分析

Fig.3   EBSD analyses of microstructural characteristics of AZ31 magnesium alloy sheets with initial basal texture after the first (a1-a3), second (b1-b3), and fourth (c1-c3) passes of rolling at medium temperature (ET—extension twin, CT—compression twin, ST—secondary twin, HAGB—high angle grain boundary, LAGB—low angle grain boundary)

(a1-c1) IPFs (a2-c2) grain boundary (GB) maps (a3-c3) grain orientation spread (GOS) maps


图4

图4   双峰分离非基面织构AZ31镁合金板材中温轧制样品微观结构特征的EBSD分析

Fig.4   EBSD analyses of microstructural characteristics of AZ31 magnesium alloy sheets with initial bimodal non-basal texture after the first (a1-a3), second (b1-b3), and fifth (c1-c3) passes of rolling at medium temperature

(a1-c1) IPFs (a2-c2) GB maps (a3-c3) GOS maps


图5

图5   不同织构AZ31镁合金板材中温轧制变形过程中的再结晶晶粒演化

Fig.5   EBSD images and (0002) PF (insets) showing the evolution of recrystallized grains within AZ31 magnesium alloy sheets with different textures during rolling process at medium temperature

(a1-a3) the first (a1), second (a2), and fourth (a3) passes for basal texture sheets (b1-b3) the first (b1), second (b2), and fifth (b3) passes for bimodal non-basal texture sheets


3 分析与讨论

研究[20]表明,变形机制的开启对镁合金塑性变形行为有着重要影响。当温度升高至200 ℃时,非基面滑移的临界分切应力(critical resolved shear stress,CRSS)将显著降低[21~23]。对于基面织构AZ31镁合金板材而言,其中温轧制变形机制如图6a1~a3所示。在轧制变形过程中会激活大量的基面<a>位错和非基面位错(包括柱面<a>位错和锥面<c + a>位错)[9],并伴随产生部分{101¯1}-{101¯2}ST来协调塑性变形。随着轧制变形量的增加,位错在孪晶界与晶界处开始大量积累。虽然变形温度(200 ℃)低于镁合金的再结晶温度,但是由于在晶界和孪晶界的严重位错塞积,会导致DRX的发生[19]。此外,研究[24]发现,{101¯1}-{101¯2}ST对镁合金的再结晶行为具有促进作用,其可为DRX的产生提供更多的形核点位。上述2个因素的共同作用导致基面织构板材在四道次轧制后的再结晶晶粒尺寸较大且体积分数高达47.9% (图5a3)。对双峰分离非基面织构AZ31镁合金板材而言,其中温轧制变形机制如图6b1~b3所示。在轧制变形初期不仅会激活多类型的位错(基面<a>位错、柱面<a>位错和锥面<c + a>位错),还会激活大量的{101¯2}ET来承载塑性应变[25]。随着轧制道次的增加,{101¯2}ET界面向基体区域迁移的同时吸收大量位错[26],这将降低变形晶粒内的位错密度,进而延缓DRX的发生,导致双峰分离非基面织构板材五道次轧制变形后的再结晶晶粒尺寸较小且体积分数仅为11.4% (图5b3)。

图6

图6   不同织构AZ31镁合金板材中温轧制过程中的变形机制示意图

Fig.6   Schematics of deformation mechanisms for AZ31 magnesium alloy sheets with different textures during medium-temperature rolling

(a1-a3) the first (a1), second (a2), and fourth (a3) passes for basal texture sheets (b1-b3) the first (b1), second (b2), and fifth (b3) passes for bimodal non-basal texture sheets


Huang等[27]研究表明,DRX有助于缓解镁合金板材轧制变形过程中晶界位置的应力集中,并消耗晶界附近的塞积位错,进而延缓微裂纹的产生。因此,对于基面织构AZ31镁合金板材而言,尽管初始的基面织构特征不利于轧制变形,但中温轧制变形过程中快速发生的DRX和较高的DRX体积分数确保其具有较好的轧制变形能力(累积压下量为43.6%)。对于双峰分离非基面织构AZ31镁合金板材而言,尽管其初始的双峰分离非基面织构特征有利于轧制变形,但轧制变形过程中{101¯2}ET界面迁移会延缓DRX的发生并导致DRX体积分数较低。此外,轧制变形后期出现的{101¯1}CT易成为微裂纹的萌生位点。在2者的共同作用下,导致该板材的中温轧制性能相比于基面织构板材无明显提升,累积压下量仅为48.0%。

4 结论

(1) 在中温(200 ℃)多道次轧制实验中,双峰分离非基面织构AZ31镁合金板材经五道次轧制后出现边裂,其累积压下量为48.0%,基面织构板材经四道次轧制后出现边裂,其累积压下量为43.6%。双峰分离非基面织构板材的累积压下量仅比基面织构板材高出4.4%。表明在中温条件下,双峰分离非基面织构对板材轧制性能的提升有限。

(2) 基面织构板材在轧制变形过程中会激活大量的基面<a>位错和非基面位错(包括柱面<a>位错和锥面<c + a>位错),以及少量的{101¯1}-{101¯2}ST,进而在晶界和孪晶界位置发生明显的DRX。双峰分离非基面织构板材在轧制变形初期除了激活高密度的位错,亦会激活大量的{101¯2}ET来承载塑性应变。随着轧制道次的增加,{101¯2}ET界面向基体区域迁移的同时吸收大量位错,这将会降低变形晶粒内的位错密度,进而延缓DRX的发生。

(3) 在中温条件下,基面织构板材累积压下量43.6%时的DRX体积分数高达47.9%,而双峰分离非基面织构板材累积压下量48.0%时的DRX体积分数仅为11.4%。这种差异显著的DRX行为是导致基面织构板材和双峰分离非基面织构板材轧制性能接近(累积压下量差仅为4.4%)的主要原因。

参考文献

You S H, Huang Y D, Kainer K U, et al.

Recent research and developments on wrought magnesium alloys

[J]. J. Magnes. Alloy., 2017, 5: 239

[本文引用: 2]

Joost W J, Krajewski P E.

Towards magnesium alloys for high-volume automotive applications

[J]. Scr. Mater., 2017, 128: 107

Hirsch J, Al-Samman T.

Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications

[J]. Acta Mater., 2013, 61: 818

Ding W J, Wu Y J, Peng L M, et al.

Research and application development of advanced magnesium alloys

[J]. Mater. China, 2010, 29(8): 37

丁文江, 吴玉娟, 彭立明 .

高性能镁合金研究及应用的新进展

[J]. 中国材料进展, 2010, 29(8): 37

Song J F, She J, Chen D L, et al.

Latest research advances on magnesium and magnesium alloys worldwide

[J]. J. Magnes. Alloy., 2020, 8: 1

[本文引用: 1]

Shen Z, Wang Z P, Hu B, et al.

Research progress on the mechanisms controlling high-temperature oxidation resistance of Mg alloys

[J]. Acta Metall. Sin., 2023, 59: 371

DOI      [本文引用: 1]

This paper briefly reviews the progress on high-temperature oxidation mechanisms of pure Mg and Mg alloys, the thermodynamics and kinetics of high-temperature oxidation of Mg alloys, and the antioxidation mechanism of Mg alloys. The potential of applying advanced characterization techniques in studying the high-temperature oxidation of Mg alloys is envisaged. Finally, the development trends of the oxidation-resistant Mg alloy are also summarized. The main viewpoints are as follows: The protection of magnesium alloys at high temperatures is provided by the formation of a continuous, dense oxide scale that is a specific thickness and prevents the outward diffusion of magnesium vapor and the inward diffusion of oxygen; the oxidation resistance of Mg alloys is usually closely related to the thermal stability of the second phases; when the trace alloy elements are not enough to form the corresponding surface oxide scale, the oxidation resistance can be improved by creating a substitutional solid solution and using the reactive element effect; the size of the oxide grain size decreases and then enhances the oxidation resistance once the surface active elements is enriched on the surface of the alloys; the selective oxidation and synergistic effect of alloying elements are critical to the oxidation resistance of Mg alloys; the addition of nano or microparticles into the Mg alloys improve the high-temperature oxidation resistance of the Mg alloy by reducing the size of specific oxidation sensitive regions. In the future, the research on the high-temperature oxidation of Mg alloys can be based on the following aspects: Investigating the processes and nature of the oxidation resistance of Mg alloys using cutting-edge characterization techniques; constructing the underlying connections between the alloying elements and the oxide scale grain size and mechanical properties; designing and optimizing multi-alloying element composition systems.

沈 朝, 王志鹏, 胡 波 .

镁合金抗高温氧化机理研究进展

[J]. 金属学报, 2023, 59: 371

[本文引用: 1]

Luo J R, Liu Q, Liu W, et al.

Influence of rolling temperature on the {1011}-{1012} twinning in rolled AZ31 magnesium alloy sheets

[J]. Acta Metall. Sin., 2012, 48: 717

[本文引用: 2]

罗晋如, 刘 庆, 刘 伟 .

轧制温度对AZ31镁合金轧制板材中的{1011}-{1012}双孪生行为的影响

[J]. 金属学报, 2012, 48: 717

DOI      [本文引用: 2]

在150-350 ℃温区内不同温度下轧制AZ31镁合金板, 观察了不同温度下轧制变形量为9%的AZ31镁合金板材的显微组织, 研究分析了轧制温度对轧制板材中{1011}-{1012} 双孪晶的含量、类型以及高温轧制过程中双孪晶中的动态再结晶行为的影响, 讨论了板材中的孪晶对其力学性能的影响. 研究结果表明: 在150-300 ℃温区内轧制时,板材组织中均有含量不等的{1011}-{1012} 双孪晶,随着轧制温度的升高, 孪晶含量下降. 250 ℃以上轧制的板材中单片一次孪晶中出现的双孪晶类型较为单一, 仅出现共面型双孪晶.在250 ℃以上轧制板材中的双孪晶晶界处中可以观察到明显的动态再结晶现象, 这些动态再结晶晶粒对孪晶界和孪晶起到消除和吞噬的作用. 350 ℃下轧制的AZ31镁合金板材中未观察到{1011}-{1012双孪晶. 随着轧制温度的升高,镁合金轧制板材的强度减弱而塑性增强.

Luo J R, Godfrey A, Liu W, et al.

Twinning behavior of a strongly basal textured AZ31 Mg alloy during warm rolling

[J]. Acta Mater., 2012, 60: 1986

[本文引用: 1]

Liu Z J, Zhao H Y, Hu X D, et al.

Effects of rolling temperature on edge crack and microstructure of AZ31B magnesium alloy thin strip

[J]. Hot Work. Technol., 2016, 45(21): 34

[本文引用: 2]

刘子健, 赵红阳, 胡小东 .

轧制温度对AZ31B镁合金薄带轧制的边裂及显微组织的影响

[J]. 热加工工艺, 2016, 45(21): 34

[本文引用: 2]

Li Y S, Qu C, Wang J H, et al.

Effect of multi-pass warm rolling process on microstructure and properties of AZ31 magnesium alloy

[J]. Chin. J. Nonferrous Met., 2020, 30: 60

[本文引用: 1]

李彦生, 渠 成, 王金辉, .

多道次温轧对AZ31镁合金组织和性能的影响

[J]. 中国有色金属学报, 2020, 30: 60

[本文引用: 1]

Jia W P, Hu X D, Zhao H Y, et al.

Texture evolution of AZ31 magnesium alloy sheets during warm rolling

[J]. J. Alloys Compd., 2015, 645: 70

[本文引用: 2]

Tu J, Zhou T, Liu L, et al.

Effect of rolling speeds on texture modification and mechanical properties of the AZ31 sheet by a combination of equal channel angular rolling and continuous bending at high temperature

[J]. J. Alloys Compd., 2018, 768: 598

[本文引用: 2]

Zhang S Z, Hu L, Ruan Y T, et al.

Influence of bimodal non-basal texture on microstructure characteristics, texture evolution and deformation mechanisms of AZ31 magnesium alloy sheet rolled at liquid-nitrogen temperature

[J]. J. Magnes. Alloy., 2023, 11: 2600

[本文引用: 1]

Kamaya M, Maekawa N.

A procedure to obtain correlation curve between local misorientation and plastic strain

[J]. Mater. Charact., 2023, 198: 112725

[本文引用: 1]

Kamaya M, Sakakibara Y, Yoda R, et al.

A round robin EBSD measurement for quantitative assessment of small plastic strain

[J]. Mater. Charact., 2020, 170: 110662

[本文引用: 1]

Han X Z, Hu L, Jia D Y, et al.

Role of unusual double-peak texture in significantly enhancing cold rolling formability of AZ31 magnesium alloy sheet

[J]. Trans. Nonferrous Met. Soc. China, 2023, 33: 2351

[本文引用: 1]

Chen J M.

Study on cold rolling formability and associated microstructure evolution of AZ31 magnesium alloy sheet with bimodal non-basal texture

[D]. Chongqing: Chongqing University of Technology, 2021

[本文引用: 1]

陈家明.

双峰分离非基面织构AZ31镁合金板材冷轧性能及组织演化研究

[D]. 重庆: 重庆理工大学, 2021

[本文引用: 1]

Zhou H T, Kong F T, Wu K, et al.

Hot pack rolling nearly lamellar Ti-44Al-8Nb-(W, B, Y) alloy with different rolling reductions: Lamellar colonies evolution and tensile properties

[J]. Mater. Des., 2017, 121: 202

[本文引用: 1]

Wei S B, Cai Q W, Tang D, et al.

Microstructure evolution in warm rolling of extrude AZ31B magnesium alloy plates

[J]. J. Plast. Eng., 2008, 15(6): 91

[本文引用: 2]

魏松波, 蔡庆伍, 唐 荻 .

挤压AZ31B镁合金板材中温轧制变形中的组织变化

[J]. 塑性工程学报, 2008, 15(6): 91

[本文引用: 2]

Liu Q.

Research progress on plastic deformation mechanism of Mg alloys

[J]. Acta Metall. Sin., 2010, 46: 1458

DOI      [本文引用: 1]

Possible slip and twinning systems and their critical resolved shear stresses of Mg alloys with hcp structure were described. Research works on plastic deformation behavior and micro-mechanism of different kinds of Mg alloys were reviewed. Both microstructure and texture evolutions during different thermomechanical processes, both dynamic and static recrystallization mechanisms of Mg alloys were described and discussed. Deformation and strengthening mechanisms of precipitates hardening Mg alloys were also addressed with emphasis on the interaction between precipitates and twinning/slip.

刘 庆.

镁合金塑性变形机理研究进展

[J]. 金属学报, 2010, 46: 1458

[本文引用: 1]

Chapuis A, Driver J H.

Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals

[J]. Acta Mater., 2011, 59(5):198

[本文引用: 1]

Bajargan G, Singh G, Sivakumar D, et al.

Effect of temperature and strain rate on the deformation behavior and microstructure of a homogenized AZ31 magnesium alloy

[J]. Mater. Sci. Eng., 2013, A579: 26

Ebeling T, Hartig C, Laser T, et al.

Deformation mechanisms of AZ31 magnesium alloy

[A]. Essential Readings in Magnesium Technology [M]. Cham: Springer, 2016: 333

[本文引用: 1]

Shi J J, Ye P, Cui K X, et al.

Static recrystallization induced by twinning in AZ31 magnesium alloy

[J]. J. Mater. Eng., 2018, 46(11): 134

[本文引用: 1]

石晶晶, 叶 朋, 崔凯旋 .

孪晶诱发的AZ31镁合金静态再结晶行为

[J]. 材料工程, 2018, 46(11): 134

DOI      [本文引用: 1]

利用电子背散射衍射(EBSD)技术研究了AZ31镁合金单轴压缩变形后产生不同类型的孪晶组织对静态再结晶的晶粒形核及取向变化的影响,样品在室温下进行应变为16%的单轴压缩变形,然后在250℃分别保温3,20min和60min进行退火实验。结果表明:样品在退火3min后只有局部发生再结晶,且再结晶小晶粒优先在{1011}-{1012}二次孪晶内部形核,而{1012}拉伸孪晶不利于再结晶晶粒的形核;退火20min后完成再结晶过程。由孪晶诱发的新形核的再结晶晶粒与基体的取向差在38&deg;两侧随机分布,可明显细化原始晶粒,并弱化变形后的取向。

Pandey A, Kabirian F, Hwang J H, et al.

Mechanical responses and deformation mechanisms of an AZ31 Mg alloy sheet under dynamic and simple shear deformations

[J]. Int. J. Plast., 2015, 68: 111

[本文引用: 1]

Zhang Z, Peng J H, Huang J A, et al.

{ 10 1 ¯ 2 } twinning nucleation in magnesium assisted by alternative sweeping of partial dislocations via an intermediate precursor

[J]. J. Magnes. Alloy., 2020, 8: 1102

DOI      [本文引用: 1]

Molecular dynamic simulation and transmission electron microscopy (TEM) characterization was employed to investigate the {10 (1) over bar2} twinning mechanism in magnesium. A partial dislocation assisted twinning nucleation mechanism was proposed based on simulation results, in which the twin lattice was reconstructed from parental matrix by two-step sweeping of partial dislocations on different close packed planes from matrix and the subsequently formed twin precursor respectively. A {10 (1) over bar2} twin precursor was observed adjacent to matrix/twin interface by a spherical aberration corrected TEM, which indicated the hexagonal-close-packed (hcp) matrix -> quasi face-centered cubic (fcc) twinning precursor -> h.c.p twin transformation sequence during {10 (1) over bar2} twinning process. (C) 2020 Published by Elsevier B.V. on behalf of Chongqing University.

Huang Y J, Zeng G, Huang L X, et al.

Influence of strain rate on dynamic recrystallization behavior and hot formability of basal-textured AZ80 magnesium alloy

[J]. Mater. Charact., 2022, 187: 111880

[本文引用: 1]

/