Please wait a minute...
金属学报  2014, Vol. 50 Issue (11): 1350-1356    DOI: 10.11900/0412.1961.2014.00183
  本期目录 | 过刊浏览 |
C含量对TiWCN复合膜微结构、力学性能和摩擦磨损性能的影响
喻利花, 董鸿志, 许俊华()
江苏科技大学材料科学与工程学院, 镇江 212003
INFLUENCE OF C CONTENT ON MICROSTRUCTURE, MECHANICAL PROPERTIES AND FRICTION AND WEAR PROPERTIES OF TiWCN COMPOSITE FILMS
YU Lihua, DONG Hongzhi, XU Junhua()
Institute of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003
引用本文:

喻利花, 董鸿志, 许俊华. C含量对TiWCN复合膜微结构、力学性能和摩擦磨损性能的影响[J]. 金属学报, 2014, 50(11): 1350-1356.
Lihua YU, Hongzhi DONG, Junhua XU. INFLUENCE OF C CONTENT ON MICROSTRUCTURE, MECHANICAL PROPERTIES AND FRICTION AND WEAR PROPERTIES OF TiWCN COMPOSITE FILMS[J]. Acta Metall Sin, 2014, 50(11): 1350-1356.

全文: PDF(2521 KB)   HTML
摘要: 

采用磁控溅射仪制备了一系列不同C含量的TiWCN复合膜. 利用XRD, SEM, 纳米压痕仪和高温摩擦磨损仪等对TiWCN复合膜的微结构、力学性能和摩擦磨损性能进行了表征. 结果表明: TiWCN复合膜由fcc结构的TiWCN相和六方结构的Ti2N相组成; 随着C含量增加, 薄膜硬度先升高后降低, 室温摩擦系数逐渐减小, 而磨损率先减小后增大. 当C含量为11.25%时, 硬度达到最大值, 为35.97 GPa; 磨损率获得最小值, 为1.26×10-5 mm3·N-1·m-1. 当C含量为13.68%时, 摩擦系数最小, 为0.32. 当温度低于370 ℃时, TiWCN复合膜的摩擦系数和磨损率小于TiWN薄膜; 当温度超过370 ℃时, TiWCN复合膜的摩擦系数和磨损率大于TiWN薄膜. C添加到TiWN薄膜中提高了薄膜的力学性能和常温摩擦磨损性能, 而薄膜的高温摩擦磨损性能并未得到改善.

关键词 磁控溅射TiWCN复合膜微结构力学性能摩擦磨损性能    
Abstract

Over the past decades, traditional hard transition metal nitride films, such as TiN, have been widely used as machining and metal-forming tools coating materials due to their high hardness and chemical stability. With the rapid development of modern industrial technology, TiN has been unable to meet the requirements of modern industry, nanocomposite films because of its excellent comprehensive performance have attracted more and more scholars' attention. TiWN film as one of the TiN-based films has become a better substitute material. However the room temperature tribological property of TiWN film is not ideal, which limits its use of performance. According to the published experimental studies, C can well improve the room temperature tribological property because of its self-lubricating performance. However the effects of C content on the hardness of TiWN film is still not clear. The effects of C on mechanical property and the friction and wear property of TiWN film remain to be investigated. A series of TiWCN composite films with various C contents have been synthesized by magnetron sputtering technique. The microstructures, mechanical properties and the friction and wear property were investigated by XRD, SEM, nano-indentation, high temperature ball-on-disc tribo-meter, respectively. The results show that TiWCN composite films consist of fcc structure TiWCN phase and hcp structure Ti2N phase. With the increase of C content, the hardness of TiWCN films increases first and then decreases, the wear rate decreases first and then increases, while the friction coefficient gradually decreases. The maximum hardness of 35.97 GPa and the minimum wear rate value of 1.26×10-5 mm3·N-1·m-1 are obtained when C content is 11.25%. The minimum friction coefficient of 0.32 is obtained when C content is 13.68%. The friction coefficient and wear rate of TiWCN composite films are lower than that of TiWN films when the temperature is below 370 ℃; while the values are higher than that of TiWN films when the temperature exceeds 370 ℃. C added to the TiWN films improves mechanical properties and the room temperature friction and wear properties of the films though does not enhance the high temperature friction and wear properties of the films.

Key wordsmagnetron sputtering    TiWCN composite film    microstructure    mechanical property    friction and wear property
收稿日期: 2014-08-07     
ZTFLH:  TG174.444  
基金资助:*国家自然科学基金项目51074080和51374115资助
作者简介: null

喻利花, 女, 1964年生, 教授

图1  不同C靶功率的TiWCN复合膜中各元素的含量
图2  不同C含量的TiWCN复合膜XRD谱
图3  不同C含量的TiWCN复合膜Raman光谱
图4  TiWCN复合膜的晶粒尺寸
图5  不同C含量的TiWCN复合膜的硬度和残余应力
图6  不同C含量的TiWCN复合膜的摩擦曲线、摩擦系数和磨损率
图7  TiWN薄膜和TiWCN复合膜高温摩擦系数和磨损率
图8  不同温度下TiWN 薄膜和TiWCN复合膜摩擦后XRD谱及WO3含量
图9  在500和700 ℃下TiWN薄膜和TiWCN复合膜的磨痕形貌
[1] Gustavsson L E, Baránková H, Bárdos L. Surf Coat Technol, 2006; 201: 1464
[2] Veprek S, Veprek-Heijman M J G. Surf Coat Technol, 2008; 202: 5063
[3] Pan L, Bai Y Z, Zhang D, Wang J. Rare Met, 2012; 31: 183
[4] Neidhardt J, Czigány Z, Sartory B, Tessadri R, Mitterer C. Int J Refract Met Hard Mater, 2010; 28: 23
[5] Yu L H, Xue A J, Dong S T, Xu J H. Trans Mater Heat Treat, 2010; 31: 140
[5] (喻利花, 薛安俊, 董松涛, 许俊华. 材料热处理学报, 2010; 31: 140)
[6] Ezura H, Ichijo K, Hasegawa H, Yamamoto K, Hotta A, Suzuki T. Vacuum, 2008; 82: 476
[7] Caicedo J C, Yate L, Montes J. Surf Coat Technol, 2011; 205: 2947
[8] Manory R R, Mollica S, Ward L, Purushotham K P, Evans P, Noorman J, Perry A J. Surf Coat Technol, 2002; 155: 136
[9] Tian B, Yue W, Fu Z Q, Gu Y H, Wang C B, Liu J J. Vacuum, 2014; 99: 68
[10] Gassner G, Mayrhofer P H, Kutschej K, Mitterer C, Kathrein M. Surf Coat Technol, 2006; 201: 3335
[11] Chang C L, Hsieh T J. J Mater Process Technol, 2009; 209: 5521
[12] Yu L H, Ma B Y, Xu J H. Acta Metall Sin, 2012; 48: 469
[12] (喻利花, 马冰洋, 许俊华. 金属学报, 2012; 48: 469)
[13] Zhang X H, Jiang J Q, Zeng Y Q, Lin J L,Wang F L, Moore J J. Surf Coat Technol, 2008; 203: 594
[14] Xu J H, Cao J, Yu L H. Acta Metall Sin, 2012; 48: 555
[14] (许俊华, 曹 峻, 喻利花. 金属学报, 2012; 48: 555)
[15] Cheng G A, Han D Y, Liang C L,Wu X L, Zheng R T. Surf Coat Technol, 2013; 228: S328
[16] Li C Y, Chen L. Iron Steel Res, 1991; (2): 41
[16] (李长一, 陈 亮. 钢铁研究, 1991; (2): 41)
[17] Chen R, Tu J P, Liu D G, Mai Y J, Gu C D. Surf Coat Technol, 2011; 205: 5228
[18] Xue Q J,Wang L P. Diamond-Like Carbon Film Materials. Beijing: Science Press, 2012: 18
[18] (薛群基,王立平. 类金刚石碳基薄膜材料. 北京: 科学出版社, 2012: 18)
[19] Martínez-Martínez D, Sánchez-López J C, Rojas T C, Fernández A, Eaton P, Belin M. Thin Solid Films, 2005; 472: 64
[20] Ertürk E, Knotek O, Burgmer W, Prengel H G, Heuvel H J, Dederichs H G, Stössel C. Surf Coat Technol, 1991; 46: 39
[21] Aliofkhazraei M, Sabour Rouhaghdam A. Surf Coat Technol, 2010; 205: S51
[22] Yamamoto T, Kawate M, Hasegawa H, Suzuki T. Surf Coat Technol, 2005; 193: 372
[23] Wu W Y, Wu C H, Xiao B H, Yang T X, Lin S Y, Chen P H, Chang C L. Vacuum, 2013; 87: 209
[24] Zhang L Q, Yang H S, Pang X L, Gao K W, Volinsky A A. Surf Coat Technol, 2013; 224: 120
[25] Lin J L, Moore J J, Mishra B, Pinkas M, Sproul W D. Acta Mater, 2010; 58: 1554
[26] Ziegele H, Rebholz C, Voevodin A A, Leyland A, Rohde S L, Matthews A. Tribology Int, 1997; 30: 845
[27] Chen X Y, Wang Z H, Ma S L, Ji V. Diamond Relat Mater, 2010; 19: 1336
[28] Aizawa T, Mitsuo A, Yamamoto S, Sumitomo T, Muraishi S. Wear, 2005; 259: 708
[29] Zeman P, Musil J. Appl Surf Sci, 2006; 252: 8319
[30] Aubert A, Danroc J, Gaucher A. Thin Solid Films, 1985; 126 : 61
[31] Aizawa T, Mitsuo A, Yamamoto S, Sumitomo T, Muraishi S. Wear, 2005; 259: 708
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[11] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.