Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys
FENG Qiang,1, LU Song1, LI Wendao1,2, ZHANG Xiaorui1, LI Longfei,1, ZOU Min1, ZHUANG Xiaoli1
1Beijing Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
2School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
Corresponding authors:FENG Qiang, professor, Tel:(010)62333751, E-mail:qfeng@skl.ustb.edu.cn;LI Longfei, associate professor, Tel:(010)62334862, E-mail:lilf@skl.ustb.edu.cn
Received:2023-05-18Revised:2023-08-10
Fund supported:
National Natural Science Foundation of China(52171095) National Natural Science Foundation of China(52201100) National Natural Science Foundation of China(52201024) National Natural Science Foundation of China(51771019) National Natural Science Foundation of China(92060113) National Key Research and Development Program of China(2017YFB0702902) China Postdoctoral Science Foundation(2022M710346)
Recently, with the development of aviation engines and ground-based gas turbines, the demands for the environmental resistance and temperature-bearing capacity of their key hot-end components have considerably increased. Compared to Ni-based superalloys, novel γ′-strengthened Co-based superalloys are more advantageous owing to their corrosion resistance and melting temperature. To facilitate the development of these alloys, research on their alloying principles, alloy design, and creep mechanisms is summarized in this paper based on domestic and international results. Furthermore, herein, the key scientific problems in the development of such alloys are discussed, and the possible development trends and challenges in the future are surveyed.
FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. Acta Metallurgica Sinica, 2023, 59(9): 1125-1143 DOI:10.11900/0412.1961.2023.00223
镍基和钴基高温合金是航空、航天、舰船、能源和化工等领域使用的重要高温结构材料。随着我国制造强国战略的实施,上述领域的核心装备,如先进航空发动机、重型地面燃气轮机和压力反应容器,面临日益严苛的高温、热腐蚀和复杂载荷等服役环境。对比镍基高温合金,碳化物强化传统钴基高温合金的熔点温度更高,且具有优异的耐蚀性、抗热疲劳性、可铸性及焊接性,非常适用于制造航空发动机燃烧室及导向叶片、重型燃气轮机用大尺寸叶片以及大型高温压力反应釜等在极端条件下服役的关键部件,但缺乏γ'相强化机制限制了该类合金的承温能力,严重阻碍了其在更高温度(> 800℃)下的工程应用。2006年,Sato等[1]在Co-Al-W基合金体系中发现了γ'溶解温度达到990℃的γ'-Co3(Al, W)相,比γ'-Co3Ti和Co3Ta提高了250℃左右,预示着γ'相强化新型钴基高温合金体系有望实现高承温能力和高环境抗力的结合。2014年5月,在法国举行的每四年一届的欧洲高温合金大会(EuroSuperalloys 2014)上,主旨报告人将γ'相强化钴基高温合金(以下简称“钴基高温合金”)列为高温合金材料技术(high temperature materials technology trends)未来发展的七大趋势之一。目前,该类合金在合金设计、制备、高温力学性能、氧化性能等方面取得了一系列成果,并制备出了大尺寸的钴基单晶高温合金燃机叶片[2],表现出了良好的工程应用潜力。
Fig.1
Effects of temperature (T) on lattice misfit (δ) in γ'-strengthened Co-based (a)[15] and Ni-based (b)[23] superalloys (aγ —lattice constant of γ phase, aγ' —lattice constant of γ' phase)
二次相在γ基体中析出被认为是高温合金组织不稳定的一种重要表现。镍基高温合金中的二次相主要指拓扑密排 (topolog-ically close packed,TCP)相[19];在钴基高温合金中,主要的二次相有β-B2相、χ-D019相和μ-D85相[1]。其中,μ相属于TCP相。以上二次相均会降低合金的力学性能[19],因而需要避免析出。
钴基高温合金发展初期,由于缺乏热力学数据库,合金设计主要以传统“试错法”为主,即通过研究不同成分合金的组织和性能来理解各合金元素的作用,从而指导合金设计。过去的十几年里,日本东北大学、京都大学,美国密歇根大学、加州大学圣塔芭芭拉分校、西北大学、国家标准技术研究院(National Institute of Standards and Technology,NIST),德国埃朗根-纽伦堡大学,英国帝国理工大学和印度科学学院等国际知名研究机构[6,39,43,57~59];以及我国的北京科技大学、清华大学、北京航空航天大学、厦门大学、兰州理工大学、西北工业大学、中南大学、东北大学、天津大学、中国科学院金属研究所、钢铁研究总院和北京航空材料研究院等高校和科研院所[18,60~67],对该类合金的相平衡、组织稳定性、物理性能、力学性能、氧化腐蚀机理、合金元素作用与新合金开发等方面开展了大量的研究工作。在初步理解其合金化原理的基础上,由低组元合金逐渐发展为具有一定综合性能的多组元合金[13,14,28,31]。但是,使用上述传统“试错法”进行合金开发的工作量大、周期长、成本高,不利于推动该类合金的快速发展和应用。
计算机技术的高速发展使人工智能技术和高通量计算技术逐渐融入材料科学的研究中,而这也对材料专用数据库提出了更高的要求。目前,日本国立材料研究所(National Institute for Material Science,NIMS)和美国NIST等研究机构均建立了不同领域的材料组织和性能数据库,我国也已设立相应的大数据网站“材料基因工程专用数据库”(www.mgedata.cn),并于2019年发布了全球首个材料基因工程通则标准[85]。
Fig.5
Creep properties of γ′-strengthened Co (Co-Al-W/CoNi)- and Ni-based single crystal superalloys[12,13,90,93,95,96] (T—temperature (K), tr—rupture life (h))
Fig.7
Microstructural evolutions during the tensile creep process of a Co-Al-W-based single crystal superalloys with the positive misfit at 900oC and 420 MPa[98] (Insets show the γ/γ' microstructures during the creep process, and the red circles indicate the topological inversed microstructure. σ—stress)
Fig.8
Atomic structures of superlattice intrinsic stacking fault (SISF) (a)[102] and superlattice extrinsic stacking fault (SESF) (b)[91] in the γ' phase as well as their schematic formation mechanisms (c) in γ'-strengthened Co-based single crystal superalloys (Inset in Fig.8a shows a center-of-symmetry map of the structure. LPD—leading partial dislocation, ISF—intrinsic stacking fault, APB—antiphase boundary, CISF—complex intrinsic stacking fault)
Fig.9
Different types of stacking fault (SF) interaction configurations in Co-Al-W-based single crystal superalloys[91]
(a) TEM image
(b-d) atomic resolution HAADF-scanning transmission electron microscopy (HAADF-STEM) images of V-type (b), T-type (c), and X-type (d) (Inset in Fig.9c shows an enlarged view of the red square, indicating a deviation between the SISF-2 and SISF-2′ planes)
Fig.10
Formation mechanism of APB-SISF-APB configuration in CoNi-based single crystal superalloys[28] ((1) two closely spaced Shockley partials approach the γ' phase on the (111) glide plane. (2) the leading partial enters the γ' phase, forming a SISF. (3) the trailing partial also enters the γ' phase, transforming the SISF into an APB. (4) the leading partial shears through the entire γ' phase, and the trailing partial forms a closed loop inside the γ' phase. (5) both of leading and trailing partials shear through the entire γ' phase, and partial dislocation loop surrounds an SISF and is embedded in an APB. The bottom-right corner right shows the corresponding dislocation schematic of SISF→APB transformation in the γ' phase. a—lattice constant of γ' phase, FL—dislocation line tension, Fτ —glide force resulting from the resolved shear stress, Ff—net force originating from difference between the APB and SISF energies, bAPB—Burgers vector of APB, bSISF—Burgers vector of SISF)
Fig.11
Schematic representations of the evolution of the γ/γ' microstructure and dislocation substructure in a γ'-strengthened Co-based single crystal superalloy during the deceleration (a), the minimum stable (b), onset of the global stable (c), near the end of the global stable (d), and the acceleration tensile creep (e) stages[90]
合金元素在形变亚结构处的富集会直接影响其形成能,进而影响形变抗力。Zhang等[107]和Wang等[108]针对钴基高温合金蠕变过程中形成的SF和APB,基于第一性原理计算进行了较为系统的研究,如图12[107,108]所示。研究表明,W、Re、Mo和Cr的添加有利于降低γ'相的层错能,但会提高γ'相的反相畴界能。Ni的添加有助于提高层错能,但会显著降低反相畴界能;而Ti和Ta则提高层错和反相畴界能。合金元素对2种形变亚结构形成能影响程度的排序分别为,层错能(Co3TM0.25):Ti > Hf > Pt > Ni > Rh > Ta > V > Fe > Zr > Nb > Ru > Mn > Cr > Mo > Re > Y > W (图12a)[107];反相畴界能(Co3Al0.75TM0.25):Mo > W > Re > Cr > Hf > Ti > Y > Ta > Ru > Ni > Al (图12b)[108]。Titus等[109]结合理论计算证明,层错处W等元素的偏聚会降低层错领先不全位错切入γ'相的临界应力。同时,根据不同类型合金中的形变亚结构,Titus等[57]推测,镍基高温合金具有较高的层错能,Co-Al-W基高温合金具有较高的反相畴界能,而CoNi基高温合金则介于2者之间。因此,CoNi基高温合金中更容易出现由SF和APB组成的复杂形变亚结构。
Fig.12
Influence of alloying elements on the SF (Co3TM) (a)[107]and APB (Co3Al0.75TM0.25) (b)[108] energies of γ' phase (ANNI—axial nearest-neighbor Ising, γAPB—APB energy, FP—first-principles calculation, Exp.—experiment)
Fig.13
Segregation-assisted transformation from complex stacking faults (CSFs) to superlattice stacking faults (SSFs) (a)[111] and SISF bounding by a Shockley partial dislocation in the γ' phase (b)[104] (CESF—complex extrinsic stacking fault, Inset in Fig.13b shows the Burgers vector ( b ) obtained from the Burgers circuit analysis)
Fig.14
Segregation-assisted γ'→γ transformation in the γ'-strengthened Co-based single crystal superalloys (Insets show the fast Fourier transform (FFT) spectra confirming the ordered and disordered structure in the γ' and γ' regions)
(a) leading partial dislocation in a Co-Al-W-based single crystal superalloy[104]
(b) SF interaction in a CoNi-based single crystal superalloy[94]
We have identified cobalt-base superalloys showing a high-temperature strength greater than those of conventional nickel-base superalloys. The cobalt-base alloys are strengthened by a ternary compound with the L1(2) structure, gamma' Co3(Al,W), which precipitates in the disordered gamma face-centered cubic cobalt matrix with high coherency and with high melting points. We also identified a ternary compound, gamma' Ir3(Al,W), with the L1(2) structure, which suggests that the Co-Ir-Al-W-base systems with gamma+gamma' (Co,Ir)3(Al,W) structures offer great promise as candidates for next-generation high-temperature materials.
ZXGG-SK01-8-2020 process specification for a precision casting of a Co-based single crystal turbine first-stage working blade [S]. 2020
Effects of Ni, Cr and W on the microstructural stability of multicomponent CoNi-base superalloys studied using CALPHAD and diffusion-multiple approaches
The alloying effects of Ni, W and Cr on the microstructural stability of CoNi-base alloys were investigated using a multicomponent diffusion multiple after being aged at 1000 °C for 1000 h. The diffusion multiple was carefully designed based on thermodynamic calculations. The relationships between alloy compositions and microstructural characteristics were established over a large compositional range using this single sample, and the alloying effects of Ni, W and Cr on the elemental partitioning behaviors between γ and γ′ two phases were thermodynamically analyzed using high-throughput calculation. The results together show that an increase of Ni content increases the γ′ volume faction in the long-term aged microstructures. However, the higher Ni content leads to the precipitation of the χ phase by promoting the partitioning of W from the γ′ phase to the γ phase. The decrease of W content dramatically reduces the γ′ volume faction, but the addition of Cr can properly counteract this effect by promoting the partitioning of Al and Ti from the γ phase to the γ′ phase. This study will be helpful for accelerating the development of novel γ′-strengthened multicomponent CoNi-base alloys, as well as providing experimental data to improve the thermodynamic database.
OoshimaM, TanakaK, OkamotoN L, et al.
Effects of quaternary alloying elements on the γ' solvus temperature of Co-Al-W based alloys with FCC/L12 two-phase microstructures
Due to the outstanding creep performance, nickel-based single crystal superalloys (Ni-SXs) are extensively applied in modern aero-engine and industrial gas turbine. Apart from the special single crystal structure which is disadvantageous to extension of creep cracks, Ni-SXs derive the creep strength from intrinsic two-phase microstructure (γphase and γ’ phase). Main microstructural parameters including volume fraction of γ’ phase and the lattice misfit, and the formation and distribution of precipitated phase are determined by the compositions of alloys. Besides, the creep properties are greatly influenced by these microstructural parameters and precipitated phase. This review has summarized the relationships between different alloying elements and microstructures and indicated their influence on creep properties of Ni-SXs. In addition, with the improvements of experimental methods and characterization technique, some recent discoveries have provided additional evidence to support or challenge the pervious creep theories of superalloys. In view of these new discoveries, this review has provided some perspectives which can be referenced in future compositional design of Ni-SXs.
EggelerY M, MüllerJ, TitusM S, et al.
Planar defect formation in the γ' phase during high temperature creep in single crystal CoNi-base superalloys
Effective design of a Co-Ni-Al-W-Ta-Ti alloy with high γ' solvus temperature and microstructural stability using combined CALPHAD and experimental approaches
The solvus temperature, volume fraction, coarsening behavior of γ' precipitates and the partitioning behavior of alloying elements as well as lattice misfit of γ/γ' phases influence the creep behavior of Ni- and Co-base superalloys. However, few investigations about the microstructural characteristics and the coarsening behavior of γ' precipitates were reported in multicomponent novel Co-base superalloys during thermal exposure. Two alloys containing different contents of molybdenum and tungsten have been investigated to explore the effect of molybdenum on γ' solvus temperature, γ + γ' microstructure and γ' coarsening in Co-Al-W-Ta-Ti-base alloys. The results showed that the γ' solvus temperature decreases with the addition of Mo. Mo addition reduces the γ' volume fractions after aging above 1000 °C, but results in negligible influence on the γ' volume fractions aging at 900 °C. Meanwhile, γ' coarsening is controlled by diffusion in experimental alloys after aging at 900 °C and 1000 °C, and the kinetics of γ' growth in experimental alloys are consistent with the predictions of LSW theory.
NeumeierS, RehmanH U, NeunerJ, et al.
Diffusion of solutes in fcc cobalt investigated by diffusion couples and first principles kinetic Monte Carlo
The double minimum creep, characterized by two creep rate minima, in Co-based superalloy is investigated using a phase-field model coupled with a crystal plasticity model. The constitutive modeling, based on the dislocation slip theory considering dislocation interaction, is applied to simulate microstructural evolution and deformation behavior. Rafting process commences at the beginning of creep until the global minimum of creep rate is reached, demonstrating a strengthening effect from N-type rafts under compressive creep. The high shear strain rate of $\left( 111 \right)\left[ 0\bar{1}1 \right]$ slip system in the intersections of horizontal and vertical γ channels leads to a slight increase of creep rate after the first local minimum. The evolution of stress field shows that the softening effect is the combined effect of the increase of resolved shear stress and the decrease of hardening stress in the intersections. Further, these changes in stress are primarily caused by the dislocation annihilation and the inhomogeneous plastic deformation. This study indicates that the intermediate local softening stage during creep may be eliminated if the initial inter-distance between γʹ precipitates is decreased.
ZhuJ, TitusM S, PollockT M.
Experimental investigation and thermodynamic modeling of the Co-rich region in the Co-Al-Ni-W quaternary system
High-throughput preparation and characterization of early hot-corrosion behaviors of compositional gradient Al-Cr complex coatings on a novel Co-Al-W-based alloy
Designing a material with multiple desired properties is a great challenge, especially in a complex material system. Here, we propose a material design strategy to simultaneously optimize multiple targeted properties of multi-component Co-base superalloys via machine learning. The microstructural stability, γ′ solvus temperature, γ′ volume fraction, density, processing window, freezing range, and oxidation resistance were simultaneously optimized. A series of novel Co-base superalloys were successfully selected and experimentally synthesized from >210,000 candidates. The best performer, Co-36Ni-12Al-2Ti-4Ta-1W-2Cr, possesses the highest γ′ solvus temperature of 1266.5 °C without the precipitation of any deleterious phases, a γ′ volume fraction of 74.5% after aging for 1000 h at 1000 °C, a density of 8.68 g cm−3 and good high-temperature oxidation resistance at 1000 °C due to the formation of a protective alumina layer. Our approach paves a new way to rapidly design multi-component materials with desired multi-performance functionality.
LuS, ZouM, ZhangX R, et al.
Data-driven “cross-component” design and optimization of γ'-strengthened Co-based superalloys
Atomic structure and elemental segregation behavior of creep defects in a Co-Al-W-based single crystal superalloys under high temperature and low stress
In this study, two similar, commercial polycrystalline Ni-based disk superalloys (LSHR and ME3) were creep tested at 760 degrees C and 552 MPa to approximately 0.3% plastic strain. LSHR consistently displayed superior creep properties at this stress/temperature regime even though the microstructural characteristics between the two alloys were comparable. High resolution structural and chemical analysis, however, revealed significant differences between the two alloys among active gamma' shearing modes involving superlattice intrinsic and extrinsic stacking faults. In ME3, Co and Cr segregation and Ni and Al depletion were observed along the intrinsic faults-revealing a gamma' to gamma phase transformation. Conversely in LSHR, an alloy with a higher W content, Co and W segregation was observed along the intrinsic faults. This observation combined with scanning transmission electron microscopy (STEM) simulations confirm a gamma'-to-D0(19) chi phase transformation along the intrinsic faults in LSHR. Using experimental observations and density functional theory calculations, a novel local phase transformation strengthening mechanism is proposed that could be further utilized to improve the high temperature creep capabilities of Ni-base disk alloys. Published by Elsevier Ltd on behalf of Acta Materialia Inc.
LilenstenL, KürnsteinerP, MianroodiJ R, et al.
Segregation of solutes at dislocations: A new alloy design parameter for advanced superalloys
Effect of solutes of transition metals (TM = Cr, Fe, Hf, Mn, Mo, Nb, Ni, Pt, Rh, Ru, Re, Ta, Ti, V, W, Y and Zr) on the local phase transition between the L1(2) and D0(19) structures in superlattice intrinsic stacking fault (SISF) of Co3TM has been investigated. All the models employed herein, i.e. (1) the SISF-containing supercell, (2) the axial nearest-neighbor Ising (ANNI) model, and (3) both the L1(2)- and D0(19)-containing (L1(2) + D0(19)) supercell, yield the same result regarding the stability of SISF in L1(2)-type Co3TM. In the view of bonding charge density, the atomic and electronic basis of local D0(19) phase transition in the SISF fault layers of Co3TM are revealed. Especially, the negative SISF energy predicted by the L1(2) + D0(19) model suggests that both the SISF fault layers (i.e. the local D0(19) structure) and the L12 phase of Co3TM can be stabilized through a coupling interaction between the fault layers and the solutes, paving a pathway to stabilize Co-base superalloys via Co3TM precipitate. Moreover, the consist results of E-SISF via the ANNI model with the classical SISF-supercell method utilized in first-principles calculations supports the approach to efficiently distinguish various planar faults and predict their corresponding energies, such as SISF, superlattice intrinsic stacking fault, anti-phase boundaries, and so on.
WangW Y, XueF, ZhangY, et al.
Atomic and electronic basis for solutes strengthened (010) anti-phase boundary of L12 Co3(Al, TM): A comprehensive first-principles study
Effects of Ni, Cr and W on the microstructural stability of multicomponent CoNi-base superalloys studied using CALPHAD and diffusion-multiple approaches
... 钴基高温合金发展初期,由于缺乏热力学数据库,合金设计主要以传统“试错法”为主,即通过研究不同成分合金的组织和性能来理解各合金元素的作用,从而指导合金设计.过去的十几年里,日本东北大学、京都大学,美国密歇根大学、加州大学圣塔芭芭拉分校、西北大学、国家标准技术研究院(National Institute of Standards and Technology,NIST),德国埃朗根-纽伦堡大学,英国帝国理工大学和印度科学学院等国际知名研究机构[6,39,43,57~59];以及我国的北京科技大学、清华大学、北京航空航天大学、厦门大学、兰州理工大学、西北工业大学、中南大学、东北大学、天津大学、中国科学院金属研究所、钢铁研究总院和北京航空材料研究院等高校和科研院所[18,60~67],对该类合金的相平衡、组织稳定性、物理性能、力学性能、氧化腐蚀机理、合金元素作用与新合金开发等方面开展了大量的研究工作.在初步理解其合金化原理的基础上,由低组元合金逐渐发展为具有一定综合性能的多组元合金[13,14,28,31].但是,使用上述传统“试错法”进行合金开发的工作量大、周期长、成本高,不利于推动该类合金的快速发展和应用. ...
Alloying effects on microstructural stability and γ' phase nano-hardness in Co-Al-W-Ta-Ti-base superalloys
... [12,13,90,93,95,96]Creep properties of γ′-strengthened Co (Co-Al-W/CoNi)- and Ni-based single crystal superalloys[12,13,90,93,95,96] (T—temperature (K), tr—rupture life (h))Fig.53.1 合金元素对蠕变性能的影响
... 钴基高温合金发展初期,由于缺乏热力学数据库,合金设计主要以传统“试错法”为主,即通过研究不同成分合金的组织和性能来理解各合金元素的作用,从而指导合金设计.过去的十几年里,日本东北大学、京都大学,美国密歇根大学、加州大学圣塔芭芭拉分校、西北大学、国家标准技术研究院(National Institute of Standards and Technology,NIST),德国埃朗根-纽伦堡大学,英国帝国理工大学和印度科学学院等国际知名研究机构[6,39,43,57~59];以及我国的北京科技大学、清华大学、北京航空航天大学、厦门大学、兰州理工大学、西北工业大学、中南大学、东北大学、天津大学、中国科学院金属研究所、钢铁研究总院和北京航空材料研究院等高校和科研院所[18,60~67],对该类合金的相平衡、组织稳定性、物理性能、力学性能、氧化腐蚀机理、合金元素作用与新合金开发等方面开展了大量的研究工作.在初步理解其合金化原理的基础上,由低组元合金逐渐发展为具有一定综合性能的多组元合金[13,14,28,31].但是,使用上述传统“试错法”进行合金开发的工作量大、周期长、成本高,不利于推动该类合金的快速发展和应用. ...
... ,13,90,93,95,96]Creep properties of γ′-strengthened Co (Co-Al-W/CoNi)- and Ni-based single crystal superalloys[12,13,90,93,95,96] (T—temperature (K), tr—rupture life (h))Fig.53.1 合金元素对蠕变性能的影响
Creep behavior in a γ' strengthened Co-Al-W-Ta-Ti single-crystal alloy at 1000℃
1
2015
... 钴基高温合金发展初期,由于缺乏热力学数据库,合金设计主要以传统“试错法”为主,即通过研究不同成分合金的组织和性能来理解各合金元素的作用,从而指导合金设计.过去的十几年里,日本东北大学、京都大学,美国密歇根大学、加州大学圣塔芭芭拉分校、西北大学、国家标准技术研究院(National Institute of Standards and Technology,NIST),德国埃朗根-纽伦堡大学,英国帝国理工大学和印度科学学院等国际知名研究机构[6,39,43,57~59];以及我国的北京科技大学、清华大学、北京航空航天大学、厦门大学、兰州理工大学、西北工业大学、中南大学、东北大学、天津大学、中国科学院金属研究所、钢铁研究总院和北京航空材料研究院等高校和科研院所[18,60~67],对该类合金的相平衡、组织稳定性、物理性能、力学性能、氧化腐蚀机理、合金元素作用与新合金开发等方面开展了大量的研究工作.在初步理解其合金化原理的基础上,由低组元合金逐渐发展为具有一定综合性能的多组元合金[13,14,28,31].但是,使用上述传统“试错法”进行合金开发的工作量大、周期长、成本高,不利于推动该类合金的快速发展和应用. ...
The effect of tungsten content on the properties of L12-hardened Co-Al-W alloys
... [15]和镍基[23]高温合金错配度的影响Effects of temperature (T) on lattice misfit (δ) in γ'-strengthened Co-based (a)[15] and Ni-based (b)[23] superalloys (aγ —lattice constant of γ phase, aγ' —lattice constant of γ' phase)Fig.1
(2) 元素配分行为 ...
... [15] and Ni-based (b)[23] superalloys (aγ —lattice constant of γ phase, aγ' —lattice constant of γ' phase)Fig.1
(2) 元素配分行为 ...
Effects of alloying elements on microstructure and mechanical properties of Co-Ni-Al-Ti superalloy
... 钴基高温合金发展初期,由于缺乏热力学数据库,合金设计主要以传统“试错法”为主,即通过研究不同成分合金的组织和性能来理解各合金元素的作用,从而指导合金设计.过去的十几年里,日本东北大学、京都大学,美国密歇根大学、加州大学圣塔芭芭拉分校、西北大学、国家标准技术研究院(National Institute of Standards and Technology,NIST),德国埃朗根-纽伦堡大学,英国帝国理工大学和印度科学学院等国际知名研究机构[6,39,43,57~59];以及我国的北京科技大学、清华大学、北京航空航天大学、厦门大学、兰州理工大学、西北工业大学、中南大学、东北大学、天津大学、中国科学院金属研究所、钢铁研究总院和北京航空材料研究院等高校和科研院所[18,60~67],对该类合金的相平衡、组织稳定性、物理性能、力学性能、氧化腐蚀机理、合金元素作用与新合金开发等方面开展了大量的研究工作.在初步理解其合金化原理的基础上,由低组元合金逐渐发展为具有一定综合性能的多组元合金[13,14,28,31].但是,使用上述传统“试错法”进行合金开发的工作量大、周期长、成本高,不利于推动该类合金的快速发展和应用. ...
... [23]高温合金错配度的影响Effects of temperature (T) on lattice misfit (δ) in γ'-strengthened Co-based (a)[15] and Ni-based (b)[23] superalloys (aγ —lattice constant of γ phase, aγ' —lattice constant of γ' phase)Fig.1
(2) 元素配分行为 ...
... [23] superalloys (aγ —lattice constant of γ phase, aγ' —lattice constant of γ' phase)Fig.1
... 钴基高温合金发展初期,由于缺乏热力学数据库,合金设计主要以传统“试错法”为主,即通过研究不同成分合金的组织和性能来理解各合金元素的作用,从而指导合金设计.过去的十几年里,日本东北大学、京都大学,美国密歇根大学、加州大学圣塔芭芭拉分校、西北大学、国家标准技术研究院(National Institute of Standards and Technology,NIST),德国埃朗根-纽伦堡大学,英国帝国理工大学和印度科学学院等国际知名研究机构[6,39,43,57~59];以及我国的北京科技大学、清华大学、北京航空航天大学、厦门大学、兰州理工大学、西北工业大学、中南大学、东北大学、天津大学、中国科学院金属研究所、钢铁研究总院和北京航空材料研究院等高校和科研院所[18,60~67],对该类合金的相平衡、组织稳定性、物理性能、力学性能、氧化腐蚀机理、合金元素作用与新合金开发等方面开展了大量的研究工作.在初步理解其合金化原理的基础上,由低组元合金逐渐发展为具有一定综合性能的多组元合金[13,14,28,31].但是,使用上述传统“试错法”进行合金开发的工作量大、周期长、成本高,不利于推动该类合金的快速发展和应用. ...
... [28]Formation mechanism of APB-SISF-APB configuration in CoNi-based single crystal superalloys[28] ((1) two closely spaced Shockley partials approach the γ' phase on the (111) glide plane. (2) the leading partial enters the γ' phase, forming a SISF. (3) the trailing partial also enters the γ' phase, transforming the SISF into an APB. (4) the leading partial shears through the entire γ' phase, and the trailing partial forms a closed loop inside the γ' phase. (5) both of leading and trailing partials shear through the entire γ' phase, and partial dislocation loop surrounds an SISF and is embedded in an APB. The bottom-right corner right shows the corresponding dislocation schematic of SISF→APB transformation in the γ' phase. a—lattice constant of γ' phase, FL—dislocation line tension, Fτ —glide force resulting from the resolved shear stress, Ff—net force originating from difference between the APB and SISF energies, bAPB—Burgers vector of APB, bSISF—Burgers vector of SISF)Fig.10
... [28] ((1) two closely spaced Shockley partials approach the γ' phase on the (111) glide plane. (2) the leading partial enters the γ' phase, forming a SISF. (3) the trailing partial also enters the γ' phase, transforming the SISF into an APB. (4) the leading partial shears through the entire γ' phase, and the trailing partial forms a closed loop inside the γ' phase. (5) both of leading and trailing partials shear through the entire γ' phase, and partial dislocation loop surrounds an SISF and is embedded in an APB. The bottom-right corner right shows the corresponding dislocation schematic of SISF→APB transformation in the γ' phase. a—lattice constant of γ' phase, FL—dislocation line tension, Fτ —glide force resulting from the resolved shear stress, Ff—net force originating from difference between the APB and SISF energies, bAPB—Burgers vector of APB, bSISF—Burgers vector of SISF)Fig.10
... 钴基高温合金发展初期,由于缺乏热力学数据库,合金设计主要以传统“试错法”为主,即通过研究不同成分合金的组织和性能来理解各合金元素的作用,从而指导合金设计.过去的十几年里,日本东北大学、京都大学,美国密歇根大学、加州大学圣塔芭芭拉分校、西北大学、国家标准技术研究院(National Institute of Standards and Technology,NIST),德国埃朗根-纽伦堡大学,英国帝国理工大学和印度科学学院等国际知名研究机构[6,39,43,57~59];以及我国的北京科技大学、清华大学、北京航空航天大学、厦门大学、兰州理工大学、西北工业大学、中南大学、东北大学、天津大学、中国科学院金属研究所、钢铁研究总院和北京航空材料研究院等高校和科研院所[18,60~67],对该类合金的相平衡、组织稳定性、物理性能、力学性能、氧化腐蚀机理、合金元素作用与新合金开发等方面开展了大量的研究工作.在初步理解其合金化原理的基础上,由低组元合金逐渐发展为具有一定综合性能的多组元合金[13,14,28,31].但是,使用上述传统“试错法”进行合金开发的工作量大、周期长、成本高,不利于推动该类合金的快速发展和应用. ...
Improved high temperature γ' stability of Co-Al-W-base alloys containing Ti and Ta
... Nominal compositions and γ' solvus temperature (Tγ'-solvus) of some γ'-strengthened Co-based superalloys[1,6,7,10,11,13,21,25,32-42] ...
... [32]
Co-7Al-7W-4Ti-2Ta
1157
[13]
Co-7Al-6W-4Ti-2Ta-1Mo
1143
[7]
Co-7Al-6W-4Ti-2Ta-1Nb
1150
[7]
Co-10Ni-5Al-5W-8Ti
1137
[34]
Co-20Ni-9Al-6W-4Ta-2Mo
1178
[21]
Co-30Ni-7Al-7W-4Ti-1Ta
1167
[25]
Co-30Ni-11Al-4W-4Ti-1Ta
1202
[35]
Co-30Ni-10.5Al-4Ti-7W-2.5Ta
1269
[36]
Co-30Ni-11Al-4W-4Ti-1Ta-5Cr
1173
[37]
Co-30Ni-10Al-5Mo-2Ta-2Ti-10Cr
1078
[38]
Co-35.4Ni-9.9Al-4.9Mo-2.8Ta-3.5Ti-5.9Cr
1156
[39]
Co-32Ni-9Al-2W-1Ti-1Ta-14Cr-2.5Mo-0.5Nb
1050
[40]
Co-32Ni-11Al-2W-2Ti-3Ta-5Cr-0.5Mo-0.5Nb
1201
[41]
Ni-based wrought superalloy
928-1159
[6,10,11]
Ni-based single crystal superalloy
1221-1330
[6,10,11,42]
(2) γ'相粗化和长大 ...
A new class of high strength high temperature Cobalt based γ-γ' Co-Mo-Al alloys stabilized with Ta addition
2
2015
... Nominal compositions and γ' solvus temperature (Tγ'-solvus) of some γ'-strengthened Co-based superalloys[1,6,7,10,11,13,21,25,32-42]Table 2
Alloy (atomic fraction / %)
Tγ'-solvus / oC
Ref.
Co-9Al-9.8W
990
[33]
Co-8.8Al-9.8W-2Ta
1079
[1,33]
Co-7Al-8W-4Ti-1Ta
1131
[32]
Co-7Al-7W-4Ti-2Ta
1157
[13]
Co-7Al-6W-4Ti-2Ta-1Mo
1143
[7]
Co-7Al-6W-4Ti-2Ta-1Nb
1150
[7]
Co-10Ni-5Al-5W-8Ti
1137
[34]
Co-20Ni-9Al-6W-4Ta-2Mo
1178
[21]
Co-30Ni-7Al-7W-4Ti-1Ta
1167
[25]
Co-30Ni-11Al-4W-4Ti-1Ta
1202
[35]
Co-30Ni-10.5Al-4Ti-7W-2.5Ta
1269
[36]
Co-30Ni-11Al-4W-4Ti-1Ta-5Cr
1173
[37]
Co-30Ni-10Al-5Mo-2Ta-2Ti-10Cr
1078
[38]
Co-35.4Ni-9.9Al-4.9Mo-2.8Ta-3.5Ti-5.9Cr
1156
[39]
Co-32Ni-9Al-2W-1Ti-1Ta-14Cr-2.5Mo-0.5Nb
1050
[40]
Co-32Ni-11Al-2W-2Ti-3Ta-5Cr-0.5Mo-0.5Nb
1201
[41]
Ni-based wrought superalloy
928-1159
[6,10,11]
Ni-based single crystal superalloy
1221-1330
[6,10,11,42]
(2) γ'相粗化和长大 ...
... ,33]
Co-7Al-8W-4Ti-1Ta
1131
[32]
Co-7Al-7W-4Ti-2Ta
1157
[13]
Co-7Al-6W-4Ti-2Ta-1Mo
1143
[7]
Co-7Al-6W-4Ti-2Ta-1Nb
1150
[7]
Co-10Ni-5Al-5W-8Ti
1137
[34]
Co-20Ni-9Al-6W-4Ta-2Mo
1178
[21]
Co-30Ni-7Al-7W-4Ti-1Ta
1167
[25]
Co-30Ni-11Al-4W-4Ti-1Ta
1202
[35]
Co-30Ni-10.5Al-4Ti-7W-2.5Ta
1269
[36]
Co-30Ni-11Al-4W-4Ti-1Ta-5Cr
1173
[37]
Co-30Ni-10Al-5Mo-2Ta-2Ti-10Cr
1078
[38]
Co-35.4Ni-9.9Al-4.9Mo-2.8Ta-3.5Ti-5.9Cr
1156
[39]
Co-32Ni-9Al-2W-1Ti-1Ta-14Cr-2.5Mo-0.5Nb
1050
[40]
Co-32Ni-11Al-2W-2Ti-3Ta-5Cr-0.5Mo-0.5Nb
1201
[41]
Ni-based wrought superalloy
928-1159
[6,10,11]
Ni-based single crystal superalloy
1221-1330
[6,10,11,42]
(2) γ'相粗化和长大 ...
Effects of titanium substitutions for aluminum and tungsten in Co-10Ni-9Al-9W (at%) superalloys
1
2017
... Nominal compositions and γ' solvus temperature (Tγ'-solvus) of some γ'-strengthened Co-based superalloys[1,6,7,10,11,13,21,25,32-42]Table 2
Alloy (atomic fraction / %)
Tγ'-solvus / oC
Ref.
Co-9Al-9.8W
990
[33]
Co-8.8Al-9.8W-2Ta
1079
[1,33]
Co-7Al-8W-4Ti-1Ta
1131
[32]
Co-7Al-7W-4Ti-2Ta
1157
[13]
Co-7Al-6W-4Ti-2Ta-1Mo
1143
[7]
Co-7Al-6W-4Ti-2Ta-1Nb
1150
[7]
Co-10Ni-5Al-5W-8Ti
1137
[34]
Co-20Ni-9Al-6W-4Ta-2Mo
1178
[21]
Co-30Ni-7Al-7W-4Ti-1Ta
1167
[25]
Co-30Ni-11Al-4W-4Ti-1Ta
1202
[35]
Co-30Ni-10.5Al-4Ti-7W-2.5Ta
1269
[36]
Co-30Ni-11Al-4W-4Ti-1Ta-5Cr
1173
[37]
Co-30Ni-10Al-5Mo-2Ta-2Ti-10Cr
1078
[38]
Co-35.4Ni-9.9Al-4.9Mo-2.8Ta-3.5Ti-5.9Cr
1156
[39]
Co-32Ni-9Al-2W-1Ti-1Ta-14Cr-2.5Mo-0.5Nb
1050
[40]
Co-32Ni-11Al-2W-2Ti-3Ta-5Cr-0.5Mo-0.5Nb
1201
[41]
Ni-based wrought superalloy
928-1159
[6,10,11]
Ni-based single crystal superalloy
1221-1330
[6,10,11,42]
(2) γ'相粗化和长大 ...
Effective design of a Co-Ni-Al-W-Ta-Ti alloy with high γ' solvus temperature and microstructural stability using combined CALPHAD and experimental approaches
2
2019
... Nominal compositions and γ' solvus temperature (Tγ'-solvus) of some γ'-strengthened Co-based superalloys[1,6,7,10,11,13,21,25,32-42]Table 2
... 钴基高温合金发展初期,由于缺乏热力学数据库,合金设计主要以传统“试错法”为主,即通过研究不同成分合金的组织和性能来理解各合金元素的作用,从而指导合金设计.过去的十几年里,日本东北大学、京都大学,美国密歇根大学、加州大学圣塔芭芭拉分校、西北大学、国家标准技术研究院(National Institute of Standards and Technology,NIST),德国埃朗根-纽伦堡大学,英国帝国理工大学和印度科学学院等国际知名研究机构[6,39,43,57~59];以及我国的北京科技大学、清华大学、北京航空航天大学、厦门大学、兰州理工大学、西北工业大学、中南大学、东北大学、天津大学、中国科学院金属研究所、钢铁研究总院和北京航空材料研究院等高校和科研院所[18,60~67],对该类合金的相平衡、组织稳定性、物理性能、力学性能、氧化腐蚀机理、合金元素作用与新合金开发等方面开展了大量的研究工作.在初步理解其合金化原理的基础上,由低组元合金逐渐发展为具有一定综合性能的多组元合金[13,14,28,31].但是,使用上述传统“试错法”进行合金开发的工作量大、周期长、成本高,不利于推动该类合金的快速发展和应用. ...
Alloying effects and effective alloy design of high-Cr CoNi-based superalloys via a high-throughput experiments and machine learning framework
4
2023
... Nominal compositions and γ' solvus temperature (Tγ'-solvus) of some γ'-strengthened Co-based superalloys[1,6,7,10,11,13,21,25,32-42]Table 2
... 钴基高温合金发展初期,由于缺乏热力学数据库,合金设计主要以传统“试错法”为主,即通过研究不同成分合金的组织和性能来理解各合金元素的作用,从而指导合金设计.过去的十几年里,日本东北大学、京都大学,美国密歇根大学、加州大学圣塔芭芭拉分校、西北大学、国家标准技术研究院(National Institute of Standards and Technology,NIST),德国埃朗根-纽伦堡大学,英国帝国理工大学和印度科学学院等国际知名研究机构[6,39,43,57~59];以及我国的北京科技大学、清华大学、北京航空航天大学、厦门大学、兰州理工大学、西北工业大学、中南大学、东北大学、天津大学、中国科学院金属研究所、钢铁研究总院和北京航空材料研究院等高校和科研院所[18,60~67],对该类合金的相平衡、组织稳定性、物理性能、力学性能、氧化腐蚀机理、合金元素作用与新合金开发等方面开展了大量的研究工作.在初步理解其合金化原理的基础上,由低组元合金逐渐发展为具有一定综合性能的多组元合金[13,14,28,31].但是,使用上述传统“试错法”进行合金开发的工作量大、周期长、成本高,不利于推动该类合金的快速发展和应用. ...
Coarsening kinetics of γ' precipitates in cobalt-base alloys
... [47]Mean diffusion coefficients () of some alloying elements of fourth (a) and fifth (b) period in Co and Ni[47]Fig.32 钴基高温合金的研发现状和发展趋势2.1 合金体系的发展现状和趋势2.1.1 Co-Al-W合金体系
Creep-induced planar defects in L12-containing Co- and CoNi-base single-crystal superalloys
4
2015
... 钴基高温合金发展初期,由于缺乏热力学数据库,合金设计主要以传统“试错法”为主,即通过研究不同成分合金的组织和性能来理解各合金元素的作用,从而指导合金设计.过去的十几年里,日本东北大学、京都大学,美国密歇根大学、加州大学圣塔芭芭拉分校、西北大学、国家标准技术研究院(National Institute of Standards and Technology,NIST),德国埃朗根-纽伦堡大学,英国帝国理工大学和印度科学学院等国际知名研究机构[6,39,43,57~59];以及我国的北京科技大学、清华大学、北京航空航天大学、厦门大学、兰州理工大学、西北工业大学、中南大学、东北大学、天津大学、中国科学院金属研究所、钢铁研究总院和北京航空材料研究院等高校和科研院所[18,60~67],对该类合金的相平衡、组织稳定性、物理性能、力学性能、氧化腐蚀机理、合金元素作用与新合金开发等方面开展了大量的研究工作.在初步理解其合金化原理的基础上,由低组元合金逐渐发展为具有一定综合性能的多组元合金[13,14,28,31].但是,使用上述传统“试错法”进行合金开发的工作量大、周期长、成本高,不利于推动该类合金的快速发展和应用. ...
... 合金元素在形变亚结构处的富集会直接影响其形成能,进而影响形变抗力.Zhang等[107]和Wang等[108]针对钴基高温合金蠕变过程中形成的SF和APB,基于第一性原理计算进行了较为系统的研究,如图12[107,108]所示.研究表明,W、Re、Mo和Cr的添加有利于降低γ'相的层错能,但会提高γ'相的反相畴界能.Ni的添加有助于提高层错能,但会显著降低反相畴界能;而Ti和Ta则提高层错和反相畴界能.合金元素对2种形变亚结构形成能影响程度的排序分别为,层错能(Co3TM0.25):Ti > Hf > Pt > Ni > Rh > Ta > V > Fe > Zr > Nb > Ru > Mn > Cr > Mo > Re > Y > W (图12a)[107];反相畴界能(Co3Al0.75TM0.25):Mo > W > Re > Cr > Hf > Ti > Y > Ta > Ru > Ni > Al (图12b)[108].Titus等[109]结合理论计算证明,层错处W等元素的偏聚会降低层错领先不全位错切入γ'相的临界应力.同时,根据不同类型合金中的形变亚结构,Titus等[57]推测,镍基高温合金具有较高的层错能,Co-Al-W基高温合金具有较高的反相畴界能,而CoNi基高温合金则介于2者之间.因此,CoNi基高温合金中更容易出现由SF和APB组成的复杂形变亚结构. ...
Temporal evolution of a model Co-Al-W superalloy aged at 650oC and 750oC
0
2018
Ductility enhancement by boron addition in Co-Al-W high-temperature alloys
1
2009
... 钴基高温合金发展初期,由于缺乏热力学数据库,合金设计主要以传统“试错法”为主,即通过研究不同成分合金的组织和性能来理解各合金元素的作用,从而指导合金设计.过去的十几年里,日本东北大学、京都大学,美国密歇根大学、加州大学圣塔芭芭拉分校、西北大学、国家标准技术研究院(National Institute of Standards and Technology,NIST),德国埃朗根-纽伦堡大学,英国帝国理工大学和印度科学学院等国际知名研究机构[6,39,43,57~59];以及我国的北京科技大学、清华大学、北京航空航天大学、厦门大学、兰州理工大学、西北工业大学、中南大学、东北大学、天津大学、中国科学院金属研究所、钢铁研究总院和北京航空材料研究院等高校和科研院所[18,60~67],对该类合金的相平衡、组织稳定性、物理性能、力学性能、氧化腐蚀机理、合金元素作用与新合金开发等方面开展了大量的研究工作.在初步理解其合金化原理的基础上,由低组元合金逐渐发展为具有一定综合性能的多组元合金[13,14,28,31].但是,使用上述传统“试错法”进行合金开发的工作量大、周期长、成本高,不利于推动该类合金的快速发展和应用. ...
Effect of alloying elements on oxidation behavior of Co-Al-W alloys at high temperature
1
2010
... 钴基高温合金发展初期,由于缺乏热力学数据库,合金设计主要以传统“试错法”为主,即通过研究不同成分合金的组织和性能来理解各合金元素的作用,从而指导合金设计.过去的十几年里,日本东北大学、京都大学,美国密歇根大学、加州大学圣塔芭芭拉分校、西北大学、国家标准技术研究院(National Institute of Standards and Technology,NIST),德国埃朗根-纽伦堡大学,英国帝国理工大学和印度科学学院等国际知名研究机构[6,39,43,57~59];以及我国的北京科技大学、清华大学、北京航空航天大学、厦门大学、兰州理工大学、西北工业大学、中南大学、东北大学、天津大学、中国科学院金属研究所、钢铁研究总院和北京航空材料研究院等高校和科研院所[18,60~67],对该类合金的相平衡、组织稳定性、物理性能、力学性能、氧化腐蚀机理、合金元素作用与新合金开发等方面开展了大量的研究工作.在初步理解其合金化原理的基础上,由低组元合金逐渐发展为具有一定综合性能的多组元合金[13,14,28,31].但是,使用上述传统“试错法”进行合金开发的工作量大、周期长、成本高,不利于推动该类合金的快速发展和应用. ...
合金元素对Co-Al-W合金高温氧化行为的影响
1
2010
... 钴基高温合金发展初期,由于缺乏热力学数据库,合金设计主要以传统“试错法”为主,即通过研究不同成分合金的组织和性能来理解各合金元素的作用,从而指导合金设计.过去的十几年里,日本东北大学、京都大学,美国密歇根大学、加州大学圣塔芭芭拉分校、西北大学、国家标准技术研究院(National Institute of Standards and Technology,NIST),德国埃朗根-纽伦堡大学,英国帝国理工大学和印度科学学院等国际知名研究机构[6,39,43,57~59];以及我国的北京科技大学、清华大学、北京航空航天大学、厦门大学、兰州理工大学、西北工业大学、中南大学、东北大学、天津大学、中国科学院金属研究所、钢铁研究总院和北京航空材料研究院等高校和科研院所[18,60~67],对该类合金的相平衡、组织稳定性、物理性能、力学性能、氧化腐蚀机理、合金元素作用与新合金开发等方面开展了大量的研究工作.在初步理解其合金化原理的基础上,由低组元合金逐渐发展为具有一定综合性能的多组元合金[13,14,28,31].但是,使用上述传统“试错法”进行合金开发的工作量大、周期长、成本高,不利于推动该类合金的快速发展和应用. ...
Present research situation and prospect of multi-scale design in novel Co-based superalloys: A review
A novel L12-strengthened multicomponent Co-rich high-entropy alloy with both high γ'-solvus temperature and superior high-temperature strength
0
2021
Investigation on γ' stability in CoNi-based superalloys during long-term aging at 900oC
0
2020
Microstructural stability and tensile properties of a Ti-containing single-crystal Co-Ni-Al-W-base alloy
0
2015
Plastic deformation behaviors and mechanical properties of advanced single crystalline CoNi-base superalloys
0
2019
Double minimum creep processing and mechanism for γ' strengthened cobalt-based superalloy
1
2022
... 钴基高温合金发展初期,由于缺乏热力学数据库,合金设计主要以传统“试错法”为主,即通过研究不同成分合金的组织和性能来理解各合金元素的作用,从而指导合金设计.过去的十几年里,日本东北大学、京都大学,美国密歇根大学、加州大学圣塔芭芭拉分校、西北大学、国家标准技术研究院(National Institute of Standards and Technology,NIST),德国埃朗根-纽伦堡大学,英国帝国理工大学和印度科学学院等国际知名研究机构[6,39,43,57~59];以及我国的北京科技大学、清华大学、北京航空航天大学、厦门大学、兰州理工大学、西北工业大学、中南大学、东北大学、天津大学、中国科学院金属研究所、钢铁研究总院和北京航空材料研究院等高校和科研院所[18,60~67],对该类合金的相平衡、组织稳定性、物理性能、力学性能、氧化腐蚀机理、合金元素作用与新合金开发等方面开展了大量的研究工作.在初步理解其合金化原理的基础上,由低组元合金逐渐发展为具有一定综合性能的多组元合金[13,14,28,31].但是,使用上述传统“试错法”进行合金开发的工作量大、周期长、成本高,不利于推动该类合金的快速发展和应用. ...
Experimental investigation and thermodynamic modeling of the Co-rich region in the Co-Al-Ni-W quaternary system
High-throughput preparation and characterization of early hot-corrosion behaviors of compositional gradient Al-Cr complex coatings on a novel Co-Al-W-based alloy
... 计算机技术的高速发展使人工智能技术和高通量计算技术逐渐融入材料科学的研究中,而这也对材料专用数据库提出了更高的要求.目前,日本国立材料研究所(National Institute for Material Science,NIMS)和美国NIST等研究机构均建立了不同领域的材料组织和性能数据库,我国也已设立相应的大数据网站“材料基因工程专用数据库”(www.mgedata.cn),并于2019年发布了全球首个材料基因工程通则标准[85]. ...
1
2019
... 计算机技术的高速发展使人工智能技术和高通量计算技术逐渐融入材料科学的研究中,而这也对材料专用数据库提出了更高的要求.目前,日本国立材料研究所(National Institute for Material Science,NIMS)和美国NIST等研究机构均建立了不同领域的材料组织和性能数据库,我国也已设立相应的大数据网站“材料基因工程专用数据库”(www.mgedata.cn),并于2019年发布了全球首个材料基因工程通则标准[85]. ...
... ,90,93,95,96]Creep properties of γ′-strengthened Co (Co-Al-W/CoNi)- and Ni-based single crystal superalloys[12,13,90,93,95,96] (T—temperature (K), tr—rupture life (h))Fig.53.1 合金元素对蠕变性能的影响
... [90]Schematic representations of the evolution of the γ/γ' microstructure and dislocation substructure in a γ'-strengthened Co-based single crystal superalloy during the deceleration (a), the minimum stable (b), onset of the global stable (c), near the end of the global stable (d), and the acceleration tensile creep (e) stages[90]Fig.113.4 合金元素偏析对蠕变抗力的影响
Atomic structure and elemental segregation behavior of creep defects in a Co-Al-W-based single crystal superalloys under high temperature and low stress
Atomic structures of superlattice intrinsic stacking fault (SISF) (a)[102] and superlattice extrinsic stacking fault (SESF) (b)[91] in the γ' phase as well as their schematic formation mechanisms (c) in γ'-strengthened Co-based single crystal superalloys (Inset in Fig.8a shows a center-of-symmetry map of the structure. LPD—leading partial dislocation, ISF—intrinsic stacking fault, APB—antiphase boundary, CISF—complex intrinsic stacking fault)Fig.8
... [91] in the γ' phase as well as their schematic formation mechanisms (c) in γ'-strengthened Co-based single crystal superalloys (Inset in Fig.8a shows a center-of-symmetry map of the structure. LPD—leading partial dislocation, ISF—intrinsic stacking fault, APB—antiphase boundary, CISF—complex intrinsic stacking fault)Fig.8
... ,93,95,96]Creep properties of γ′-strengthened Co (Co-Al-W/CoNi)- and Ni-based single crystal superalloys[12,13,90,93,95,96] (T—temperature (K), tr—rupture life (h))Fig.53.1 合金元素对蠕变性能的影响
... [94,104]Segregation-assisted γ'→γ transformation in the γ'-strengthened Co-based single crystal superalloys (Insets show the fast Fourier transform (FFT) spectra confirming the ordered and disordered structure in the γ' and γ' regions)
(a) leading partial dislocation in a Co-Al-W-based single crystal superalloy[104] ...
... (b) SF interaction in a CoNi-based single crystal superalloy[94] ...
Creep deformation of single crystals of new Co-Al-W-based alloys with fcc/L12 two-phase microstructures
... ,95,96]Creep properties of γ′-strengthened Co (Co-Al-W/CoNi)- and Ni-based single crystal superalloys[12,13,90,93,95,96] (T—temperature (K), tr—rupture life (h))Fig.53.1 合金元素对蠕变性能的影响
... ,96]Creep properties of γ′-strengthened Co (Co-Al-W/CoNi)- and Ni-based single crystal superalloys[12,13,90,93,95,96] (T—temperature (K), tr—rupture life (h))Fig.53.1 合金元素对蠕变性能的影响
... [98]Microstructural evolutions during the tensile creep process of a Co-Al-W-based single crystal superalloys with the positive misfit at 900oC and 420 MPa[98] (Insets show the γ/γ' microstructures during the creep process, and the red circles indicate the topological inversed microstructure. σ—stress)Fig.7
... [98] (Insets show the γ/γ' microstructures during the creep process, and the red circles indicate the topological inversed microstructure. σ—stress)Fig.7
... [102]和超点阵外禀层错(SESF)[91]的原子结构及其形成机制模型图Atomic structures of superlattice intrinsic stacking fault (SISF) (a)[102] and superlattice extrinsic stacking fault (SESF) (b)[91] in the γ' phase as well as their schematic formation mechanisms (c) in γ'-strengthened Co-based single crystal superalloys (Inset in Fig.8a shows a center-of-symmetry map of the structure. LPD—leading partial dislocation, ISF—intrinsic stacking fault, APB—antiphase boundary, CISF—complex intrinsic stacking fault)Fig.8
... [102] and superlattice extrinsic stacking fault (SESF) (b)[91] in the γ' phase as well as their schematic formation mechanisms (c) in γ'-strengthened Co-based single crystal superalloys (Inset in Fig.8a shows a center-of-symmetry map of the structure. LPD—leading partial dislocation, ISF—intrinsic stacking fault, APB—antiphase boundary, CISF—complex intrinsic stacking fault)Fig.8
... [104]Segregation-assisted transformation from complex stacking faults (CSFs) to superlattice stacking faults (SSFs) (a)[111] and SISF bounding by a Shockley partial dislocation in the γ' phase (b)[104] (CESF—complex extrinsic stacking fault, Inset in Fig.13b shows the Burgers vector ( b ) obtained from the Burgers circuit analysis)Fig.13
... ,104]Segregation-assisted γ'→γ transformation in the γ'-strengthened Co-based single crystal superalloys (Insets show the fast Fourier transform (FFT) spectra confirming the ordered and disordered structure in the γ' and γ' regions)
(a) leading partial dislocation in a Co-Al-W-based single crystal superalloy[104] ...
... (a) leading partial dislocation in a Co-Al-W-based single crystal superalloy[104] ...
Effect of stacking fault segregation and local phase transformations on creep strength in Ni-base superalloys
When a defect is a pathway to improve stability: A case study of the L12 Co3TM superlattice intrinsic stacking fault
6
2019
... 合金元素在形变亚结构处的富集会直接影响其形成能,进而影响形变抗力.Zhang等[107]和Wang等[108]针对钴基高温合金蠕变过程中形成的SF和APB,基于第一性原理计算进行了较为系统的研究,如图12[107,108]所示.研究表明,W、Re、Mo和Cr的添加有利于降低γ'相的层错能,但会提高γ'相的反相畴界能.Ni的添加有助于提高层错能,但会显著降低反相畴界能;而Ti和Ta则提高层错和反相畴界能.合金元素对2种形变亚结构形成能影响程度的排序分别为,层错能(Co3TM0.25):Ti > Hf > Pt > Ni > Rh > Ta > V > Fe > Zr > Nb > Ru > Mn > Cr > Mo > Re > Y > W (图12a)[107];反相畴界能(Co3Al0.75TM0.25):Mo > W > Re > Cr > Hf > Ti > Y > Ta > Ru > Ni > Al (图12b)[108].Titus等[109]结合理论计算证明,层错处W等元素的偏聚会降低层错领先不全位错切入γ'相的临界应力.同时,根据不同类型合金中的形变亚结构,Titus等[57]推测,镍基高温合金具有较高的层错能,Co-Al-W基高温合金具有较高的反相畴界能,而CoNi基高温合金则介于2者之间.因此,CoNi基高温合金中更容易出现由SF和APB组成的复杂形变亚结构. ...
... [107,108]所示.研究表明,W、Re、Mo和Cr的添加有利于降低γ'相的层错能,但会提高γ'相的反相畴界能.Ni的添加有助于提高层错能,但会显著降低反相畴界能;而Ti和Ta则提高层错和反相畴界能.合金元素对2种形变亚结构形成能影响程度的排序分别为,层错能(Co3TM0.25):Ti > Hf > Pt > Ni > Rh > Ta > V > Fe > Zr > Nb > Ru > Mn > Cr > Mo > Re > Y > W (图12a)[107];反相畴界能(Co3Al0.75TM0.25):Mo > W > Re > Cr > Hf > Ti > Y > Ta > Ru > Ni > Al (图12b)[108].Titus等[109]结合理论计算证明,层错处W等元素的偏聚会降低层错领先不全位错切入γ'相的临界应力.同时,根据不同类型合金中的形变亚结构,Titus等[57]推测,镍基高温合金具有较高的层错能,Co-Al-W基高温合金具有较高的反相畴界能,而CoNi基高温合金则介于2者之间.因此,CoNi基高温合金中更容易出现由SF和APB组成的复杂形变亚结构. ...
... [107];反相畴界能(Co3Al0.75TM0.25):Mo > W > Re > Cr > Hf > Ti > Y > Ta > Ru > Ni > Al (图12b)[108].Titus等[109]结合理论计算证明,层错处W等元素的偏聚会降低层错领先不全位错切入γ'相的临界应力.同时,根据不同类型合金中的形变亚结构,Titus等[57]推测,镍基高温合金具有较高的层错能,Co-Al-W基高温合金具有较高的反相畴界能,而CoNi基高温合金则介于2者之间.因此,CoNi基高温合金中更容易出现由SF和APB组成的复杂形变亚结构. ...
... [107]和反相畴界能(Co3Al0.75TM0.25)[108]的影响Influence of alloying elements on the SF (Co3TM) (a)[107]and APB (Co3Al0.75TM0.25) (b)[108] energies of γ' phase (ANNI—axial nearest-neighbor Ising, γAPB—APB energy, FP—first-principles calculation, Exp.—experiment)Fig.123.4.2 局部相转变行为
Atomic and electronic basis for solutes strengthened (010) anti-phase boundary of L12 Co3(Al, TM): A comprehensive first-principles study
6
2018
... 合金元素在形变亚结构处的富集会直接影响其形成能,进而影响形变抗力.Zhang等[107]和Wang等[108]针对钴基高温合金蠕变过程中形成的SF和APB,基于第一性原理计算进行了较为系统的研究,如图12[107,108]所示.研究表明,W、Re、Mo和Cr的添加有利于降低γ'相的层错能,但会提高γ'相的反相畴界能.Ni的添加有助于提高层错能,但会显著降低反相畴界能;而Ti和Ta则提高层错和反相畴界能.合金元素对2种形变亚结构形成能影响程度的排序分别为,层错能(Co3TM0.25):Ti > Hf > Pt > Ni > Rh > Ta > V > Fe > Zr > Nb > Ru > Mn > Cr > Mo > Re > Y > W (图12a)[107];反相畴界能(Co3Al0.75TM0.25):Mo > W > Re > Cr > Hf > Ti > Y > Ta > Ru > Ni > Al (图12b)[108].Titus等[109]结合理论计算证明,层错处W等元素的偏聚会降低层错领先不全位错切入γ'相的临界应力.同时,根据不同类型合金中的形变亚结构,Titus等[57]推测,镍基高温合金具有较高的层错能,Co-Al-W基高温合金具有较高的反相畴界能,而CoNi基高温合金则介于2者之间.因此,CoNi基高温合金中更容易出现由SF和APB组成的复杂形变亚结构. ...
... ,108]所示.研究表明,W、Re、Mo和Cr的添加有利于降低γ'相的层错能,但会提高γ'相的反相畴界能.Ni的添加有助于提高层错能,但会显著降低反相畴界能;而Ti和Ta则提高层错和反相畴界能.合金元素对2种形变亚结构形成能影响程度的排序分别为,层错能(Co3TM0.25):Ti > Hf > Pt > Ni > Rh > Ta > V > Fe > Zr > Nb > Ru > Mn > Cr > Mo > Re > Y > W (图12a)[107];反相畴界能(Co3Al0.75TM0.25):Mo > W > Re > Cr > Hf > Ti > Y > Ta > Ru > Ni > Al (图12b)[108].Titus等[109]结合理论计算证明,层错处W等元素的偏聚会降低层错领先不全位错切入γ'相的临界应力.同时,根据不同类型合金中的形变亚结构,Titus等[57]推测,镍基高温合金具有较高的层错能,Co-Al-W基高温合金具有较高的反相畴界能,而CoNi基高温合金则介于2者之间.因此,CoNi基高温合金中更容易出现由SF和APB组成的复杂形变亚结构. ...
... [108]的影响Influence of alloying elements on the SF (Co3TM) (a)[107]and APB (Co3Al0.75TM0.25) (b)[108] energies of γ' phase (ANNI—axial nearest-neighbor Ising, γAPB—APB energy, FP—first-principles calculation, Exp.—experiment)Fig.123.4.2 局部相转变行为
High resolution energy dispersive spectroscopy mapping of planar defects in L12-containing Co-base superalloys
2
2015
... 合金元素在形变亚结构处的富集会直接影响其形成能,进而影响形变抗力.Zhang等[107]和Wang等[108]针对钴基高温合金蠕变过程中形成的SF和APB,基于第一性原理计算进行了较为系统的研究,如图12[107,108]所示.研究表明,W、Re、Mo和Cr的添加有利于降低γ'相的层错能,但会提高γ'相的反相畴界能.Ni的添加有助于提高层错能,但会显著降低反相畴界能;而Ti和Ta则提高层错和反相畴界能.合金元素对2种形变亚结构形成能影响程度的排序分别为,层错能(Co3TM0.25):Ti > Hf > Pt > Ni > Rh > Ta > V > Fe > Zr > Nb > Ru > Mn > Cr > Mo > Re > Y > W (图12a)[107];反相畴界能(Co3Al0.75TM0.25):Mo > W > Re > Cr > Hf > Ti > Y > Ta > Ru > Ni > Al (图12b)[108].Titus等[109]结合理论计算证明,层错处W等元素的偏聚会降低层错领先不全位错切入γ'相的临界应力.同时,根据不同类型合金中的形变亚结构,Titus等[57]推测,镍基高温合金具有较高的层错能,Co-Al-W基高温合金具有较高的反相畴界能,而CoNi基高温合金则介于2者之间.因此,CoNi基高温合金中更容易出现由SF和APB组成的复杂形变亚结构. ...
... [111]和与SISF相连的Shockley不全位错[104]Segregation-assisted transformation from complex stacking faults (CSFs) to superlattice stacking faults (SSFs) (a)[111] and SISF bounding by a Shockley partial dislocation in the γ' phase (b)[104] (CESF—complex extrinsic stacking fault, Inset in Fig.13b shows the Burgers vector ( b ) obtained from the Burgers circuit analysis)Fig.13
... [111] and SISF bounding by a Shockley partial dislocation in the γ' phase (b)[104] (CESF—complex extrinsic stacking fault, Inset in Fig.13b shows the Burgers vector ( b ) obtained from the Burgers circuit analysis)Fig.13