Please wait a minute...
金属学报  2013, Vol. 49 Issue (6): 745-750    DOI: 10.3724/SP.J.1037.2013.00042
  论文 本期目录 | 过刊浏览 |
电流密度对V-4Cr-4Ti合金基体上电沉积W涂层显微结构的影响
李绪亮,张迎春,江凡,王莉莉,刘艳红,孙宁波
北京科技大学材料科学与工程学院, 北京 100083
EFFECTS OF CURRENT DENSITY ON MICROSTRUCTURE OF W COATING ON V-4Cr-4Ti ALLOY BY ELECTRODEPOSITION
LI Xuliang, ZHANG Yingchun, JIANG Fan, WANG Lili, LIU Yanhong, SUN Ningbo
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
引用本文:

李绪亮,张迎春,江凡,王莉莉,刘艳红,孙宁波. 电流密度对V-4Cr-4Ti合金基体上电沉积W涂层显微结构的影响[J]. 金属学报, 2013, 49(6): 745-750.
LI Xuliang, ZHANG Yingchun, JIANG Fan, WANG Lili, LIU Yanhong, SUN Ningbo. EFFECTS OF CURRENT DENSITY ON MICROSTRUCTURE OF W COATING ON V-4Cr-4Ti ALLOY BY ELECTRODEPOSITION[J]. Acta Metall Sin, 2013, 49(6): 745-750.

全文: PDF(1548 KB)  
摘要: 

利用Na2WO4-WO3熔盐体系在V-4Cr-4Ti合金基体上电沉积制备了金属W涂层,在电流密度为10-160 mA/cm2范围内研究了电流密度对金属W涂层的显微结构和力学性能的影响.研究结果表明, 增大电流密度促进了W晶核的生长以及晶粒尺寸的增大. W原子更容易在V-4Cr-4Ti合金基体上形核,而在初始W晶核上继续沉积主要是W晶核长大的过程,电流密度较大(100 mA/cm2)时, W涂层的金相组织呈柱状和条状结构, 电流密度较小时,W涂层组织呈牙柱状. W涂层的硬度随着电流密度的增加而下降,W涂层与V-4Cr-4Ti合金基体的结合强度超过59.36 MPa. 电流密度为10 mA/cm2时, 虽然涂层厚度仅有10 μm, 但W涂层晶粒尺寸小于5 μm, 涂层硬度、电流效率以及涂层和基体的结合力达到最大值, 分别为628.42 HV, 99.71%和96 N.

关键词 W涂层Na2WO4-WO3电沉积电流密度    
Abstract

The W coatings prepared on structure materials (V-4Cr-4Ti) as plasma facing materials, not only can release impinging thermal power but also can resist erosion under plasma particles bombardment in international thermonuclear experimental reactor. The electro deposition of W in Na2WO4-WO3 melt as a promising technique was studied in this work. The effects of current density on microstructure and mechanical properties of W coating were investigated, and the results show that, with the increasing of the current density, the trend of crystal growth is promoted and the grain size of W coatings increased. The nucleation easily occurs on V-4Cr-4Ti alloy substrate for W atom, and after that, the growth of crystal nuclei is the most important factor for the formation of coatings. When the current density increases to 100 mA/cm2, the metallographic structure of W coatings presents columnar or stripy structure, and tooth-like grains were presented in microstructure as current density is lower. The Vickers micro-hardness of W coatings is decreased as increasing current density, and the adhesive strength of the coatings is greater than 59.36 MPa by the tensile test. Although the thickness of tungsten coatings is 10 μm as current density is 10 mA/cm2, grain size is less than 5 μm, Vickers hardness, current efficiency and the coatings adhesion are all maximum, and the values are 628.42 HV, 99.71% and 96 N respectively.

Key wordsW coating    Na2WO4-WO3    electrodeposition    current density
收稿日期: 2013-01-23     
基金资助:

国际热核聚变实验堆(ITER)计划专项项目2010GB109000和国家自然科学基金项目50972008资助

作者简介: 李绪亮, 男, 1988年生, 硕士生

[1] Ma R X, Zhou C H, Li G X.  Chin J Nonferrous Met, 2000; 10: 715

 (马瑞新, 周传华, 李国勋. 中国有色金属学报, 2000; 10: 715)
[2] Liu Y H, Zhang Y C, Ge C C.  Mater Sci Eng Powder Metall, 2011; 16: 315
 (刘艳红, 张迎春, 葛昌纯.粉末冶金材料科学与工程, 2011; 16: 315)
[3] Bolt H, Barabash V, Krauss W, Linke J, Neu R, Suzuki S, Yoshida N.  J Nucl Mater, 2002; 329-333: 66
[4] Xu Z Y.  Atom Energy Sci Technol, 2003; 37(suppl): 105
 (许增裕. 原子能科学与技术, 2003; 37(增刊): 105)
[5] Nishimura A, Iwahori A, Heo N J, Nagasaka T, Muroga T, Tanaka S I.  J Nucl Mater, 2004; 329-333: 438
[6] Senderoff S, Mellors G W.  Science, 1966; 153: 1475
[7] Katagiri A.  J Electrochem Soc, 1991; 38: 768
[8] Masuda M, Takenishi H, Katagiri A.  J Electrochem Soc, 2001; 148: 60
[9] Nakajima H, Nohira T, Hagiwara H, Nitta K, Inazawa S, Okada K.
 Electrochim Acta, 2007; 53: 25
[10] Wu Z D.  Acta Chemica Sin, 1990; 48: 895
 (吴仲达. 化学学报, 1990; 48: 895)
[11] Malyshev V V.  Protect Met, 2001; 37: 247
[12] Ma R X, Lin W, Wu Z L, Kang B, Wang M K.  Mater Sci Technol, 2009; 17: 754
 (马瑞新, 林炜, 吴中亮, 康勃, 王目孔.材料科学与工艺, 2009; 17: 754)
[13] Li Y G.  PhD Dissertation, Northeastern University, Shenyang, 2005
 (李运刚. 东北大学博士学位论文, 沈阳, 2005)
[14] Liu Y H, Zhang Y C, Liu Q Z.  Rare Met Mater Eng, 2011; 40: 436
 (刘艳红, 张迎春, 刘其宗. 稀有金属材料与工程, 2011; 40: 436)
[15] Liu Y H, Zhang Y C, Liu Q Z, Li X L, Jiang F.  Int J Refract Met Hard Mater, 2012; 35: 241
[16] Liu Y H, Zhang Y C, Liu Q Z, Li X L, Jiang F.  Fusion Eng Des, 2012; 87: 1861
[17] Zhang Q X, Zhao Q S.  Tungsten and Molybdenum Metallurgy.Beijing: Metallurgical Industry Press, 2005: 65
 (张启修, 赵秦生. 钨钼冶金. 北京: 冶金工业出版社, 2005: 65)
[18] Zhou S M.  Principle and Methodology for Electrodeposition.Shanghai: Shanghai Science and Technology Press, 1987: 124
 (周绍民. 金属电沉积-原理与研究方法. 上海: 上海科学技术出版社, 1987: 124)
[19] Budevski E, Staikov G, Lorenz W J.  Electrochem Acta, 2000; 45: 2559
[20] Hirai T, Pintsuk G, Linke J, Batilliot M.  J Nucl Mater, 2009; 390-391: 751
[21] Pintsuk G, Prokhodtseva A.  J Nucl Mater, 2011; 417: 483
[22] Koji N, Toshiyuki N, Rika H.  J Appl Electrochem, 2010; 40: 1443
[23] Yu Y N.  Principles of Metallography. Beijing: Metallurgical Industry Press, 2000: 275
 (余永宁. 金属学原理. 北京: 冶金工业出版社, 2000: 275)
[24] Chen F C, Xiao X, Zhou Q, He D L.  Contemporary Electroplating Technology.Beijing: China Textile & Apparell Press, 2009:46
 (陈范才, 肖鑫, 周琦, 何德良. 现代电镀技术. 北京: 中国纺织出版社, 2009: 46)
[25] Sethi R S.  J Appl Eletrochem, 1979; 9: 419
[26] Simka W, Puszczyk D, Nawrat G.  Electrochim Acta, 2009; 54: 5310
[1] 杭弢, 薛琦, 李明. 无模板电沉积金属微纳米阵列材料研究进展[J]. 金属学报, 2022, 58(4): 486-502.
[2] 高运明, 何林, 秦庆伟, 李光强. 利用ZrO2 固体电解质研究Na3AlF6-SiO2 熔盐中的电沉积[J]. 金属学报, 2022, 58(10): 1292-1304.
[3] 高博文, 王美涵, 闫茂成, 赵洪涛, 魏英华, 雷浩. 2024铝合金表面PEDOT涂层的电化学制备及耐腐蚀性能[J]. 金属学报, 2020, 56(11): 1541-1550.
[4] 赵明雨,甄会娟,董志宏,杨秀英,彭晓. 新型耐磨耐高温氧化NiCrAlSiC复合涂层的制备及性能研究[J]. 金属学报, 2019, 55(7): 902-910.
[5] 马荣耀, 赵林, 王长罡, 穆鑫, 魏欣, 董俊华, 柯伟. 静水压力对金属腐蚀热力学及动力学的影响[J]. 金属学报, 2019, 55(2): 281-290.
[6] 时惠英, 杨超, 蒋百灵, 黄蓓, 王迪. 双脉冲磁控溅射峰值靶电流密度对TiN薄膜结构与力学性能的影响[J]. 金属学报, 2018, 54(6): 927-934.
[7] 秦润之, 杜艳霞, 路民旭, 欧莉, 孙海明. 高压直流干扰下X80钢在广东土壤中的干扰参数变化规律及腐蚀行为研究[J]. 金属学报, 2018, 54(6): 886-894.
[8] 赵婷婷, 康志新, 马夏雨. 一步电沉积法制备超疏水Cu网及其耐腐蚀和油水分离性能[J]. 金属学报, 2018, 54(1): 109-117.
[9] 周小卫,欧阳春,乔岩欣,沈以赴. 活性Ti表面电沉积Ni-CeO2复合镀层及其强韧性机理分析[J]. 金属学报, 2017, 53(2): 140-152.
[10] 钟晓聪, 蒋良兴, 吕晓军, 赖延清, 李劼, 刘业翔. 氯离子对Pb-Ag-RE合金阳极电化学行为的影响[J]. 金属学报, 2015, 51(3): 378-384.
[11] 颜永得, 杨晓南, 张密林, 李星, 王丽, 薛云, 张志俭. 氯化物熔盐体系共电沉积法制备Al-Li-Gd合金的研究*[J]. 金属学报, 2014, 50(8): 989-994.
[12] 单海权, 张跃飞, 毛圣成, 张泽. 电沉积纳米孪晶Ni中五次孪晶的电子显微分析*[J]. 金属学报, 2014, 50(3): 305-312.
[13] 金帅,潘庆松,卢磊. 电流密度对直流电解沉积纳米孪晶Cu微观结构的影响[J]. 金属学报, 2013, 49(5): 635-640.
[14] 龙琼,钟云波,李甫,刘春梅,周俊峰,范丽君,李明杰. 稳恒磁场对Fe-Si复合电镀层形貌及Si含量的影响[J]. 金属学报, 2013, 49(10): 1201-1210.
[15] 周小卫 沈以赴 顾冬冬. 双脉冲电沉积纳米晶Ni-CeO2复合镀层的微观结构及其高温抗氧化性能[J]. 金属学报, 2012, 48(8): 957-964.