Please wait a minute...
金属学报  2013, Vol. 49 Issue (10): 1201-1210    DOI: 10.3724/SP.J.1037.2013.00140
  论文 本期目录 | 过刊浏览 |
稳恒磁场对Fe-Si复合电镀层形貌及Si含量的影响
龙琼,钟云波,李甫,刘春梅,周俊峰,范丽君,李明杰
上海大学上海市现代冶金与材料制备重点实验室, 上海 200072
EFFECT OF STATIC MAGNETIC FIELD ON THE MORPHOLOGY AND Si CONTENT OF Fe-Si COMPOSITE COATING
LONG Qiong, ZHONG Yunbo, LI Fu, LIU Chunmei, ZHOU Junfeng, FAN Lijun, LI Mingjie
Shanghai key Laboratory of Modern Metallurgy and Material Proceeding,Shanghai University, Shanghai 200072
引用本文:

龙琼,钟云波,李甫,刘春梅,周俊峰,范丽君,李明杰. 稳恒磁场对Fe-Si复合电镀层形貌及Si含量的影响[J]. 金属学报, 2013, 49(10): 1201-1210.
LONG Qiong, ZHONG Yunbo, LI Fu, LIU Chunmei, ZHOU Junfeng, FAN Lijun, LI Mingjie. EFFECT OF STATIC MAGNETIC FIELD ON THE MORPHOLOGY AND Si CONTENT OF Fe-Si COMPOSITE COATING[J]. Acta Metall Sin, 2013, 49(10): 1201-1210.

全文: PDF(6743 KB)  
摘要: 

将平均粒径为2μm的Si粉分散于镀铁液中,对水平稳恒磁场下复合电沉积法制备Fe-Si复合镀层过程进行了研究,探讨了磁感应强度及位向、电流密度等对Fe-Si复合镀层形貌及Si含量的影响规律.结果表明, 采用竖直电极电镀时, 在0-1 T磁感应强度下,无论施加平行磁场还是垂直磁场, 镀层Si含量均随着磁场强度的增加而增加,特别对平行磁场而言, 镀层Si含量从无磁场的1.23% (质量分数, 下同)增加到1T时的39.80%; 采用水平电极电镀时, 由于重力沉降效应,阴极镀层Si含量可高达37.94%, 然而施加垂直磁场后,复合镀层Si含量随磁感应强度增加而急剧下降, 1 T时仅为2.83%,并且阴极镀层表面出现与磁场方向垂直的条状铁基质突出物,同时微米Si颗粒沿着突出物延伸方向分布. 在1 T磁场下, 无论是水平电极还是竖直电极,施加垂直磁场电镀获得的镀层Si含量均随着电流密度的增大而减小,但竖直电极平行磁场电镀获得的镀层Si含量随着电流密度的增加而先增大后减小,在20 mA/cm2时镀层颗粒含量达到最大值. 理论分析表明, 施加不同位向的稳恒磁场后,电解液中形成的宏观磁流体动力学(MHD)效应和微区MHD效应,是影响复合镀层形貌和Si含量的关键原因.

关键词 Fe-Si复合镀层稳恒磁场复合电沉积磁流体动力学(MHD)流动    
Abstract

The Si particles with average size of 2μm were dispersed in plating solution, and the electrodeposition process of Fe-Si composite coating under a static magnetic field was studied. The influences of orientation, flux density of magnetic field (MFD) and current density on the morphology and Si content of Fe-Si composite coatings were discussed. It was found that the Si content of coatings for vertical electrodes increased significantly with increasing the MFD in both parallel and perpendicular magnetic field (regard to current) with the MFD ranging from 0 T to 1 T. In the case of aclinic electrodes, the Si content of coating can reach 37.94% (mass fraction) without magnetic field. However,after applying a perpendicular magnetic field, the Si content of coatings decreased sharply with increasing the MFD (only 2.83% at 1 T). Meanwhile,many striated iron matrix protuberances with Si particles appeared perpendicular to the direction of magnetic field on the coatings surface. Moreover, the Si content of coatings decreased with increasing current density for both aclinic and vertical electrodes in 1 T perpendicular magnetic field, while that for vertical electrodes first increased and then decreased and reached maximum value at about 20 mA/cm2 in 1 T parallel magnetic field. Theoretical analysis shows that the change of morphology and Si content of coatings were mainly attributed to the formations of macroscopic magnetohydrodynamics (MHD) and micro-zone MHD effect caused by Lorenz force.

Key wordsFe-Si composite coating    static magnetic filed    composite electrodeposition    magnetohydrodynamics (MHD) flow
收稿日期: 2013-03-28     
基金资助:

国家自然科学基金-宝钢联合基金重点资助项目51034010

作者简介: 龙琼, 男, 土家族, 1984年生, 博士生

[1] Xue Y J, Si D H, Liu H B, Li J S, Lan M M. Chin J Nonferrous Met, 2011; 21: 2157

(薛玉君, 司东宏, 刘红彬, 李济顺, 兰明明.中国有色金属学报, 2011; 21: 2157)
[2] Wu G, Li N, Zhou D R, Mitsuo K. Acta Mater Comp Sin, 2004; 21(2): 8
(武刚, 李宁, 周德瑞, 仓知三夫. 复合材料学报, 2004; 21(2): 8)
[3] Zhou X W, Shen Y F, Gu D D. Acta Metall Sin, 2012; 48: 957
(周小卫, 沈以赴, 顾冬冬. 金属学报, 2012; 48: 957)
[4] Fan Y Y, Zhang Y J, Yang X W, Chen Z, Zhang J H, Tu Z M. Corros Sci Prot Technol, 2004; 16: 245
(范云鹰, 张英杰, 杨显万, 陈阵, 章江洪, 屠振密. 腐蚀科学与防护技术, 2004; 16: 245)
[5] Li A C, Zhao D, Li Q, Zhang J, Zheng Y J. Chin J Nonferrous Met, 2012; 22: 526
(李爱昌, 赵娣, 李倩, 张敬, 郑彦俊. 中国有色金属学报, 2012; 22: 526)
[6] Yonemochi S, Sugiyama A, Kawamura K, Nagoya T, Aogaki R. J Appl Electrochem, 2004; 34: 1279
[7] Chen Z, Wu J, Si Y S, Guo Z C. Mater Prot, 2012; 45(5): 35
(陈阵, 武剑, 司云森, 郭忠诚. 材料保护, 2012; 45(5): 35)
[8] Bund A, Koehler S, Kuehnlein H H, Plieth W. Electrochim Acta, 2003; 49: 147
[9] Matsushima H, Matsushima T, Ito Y. J Solid State Electrochem, 2004; 8: 195
[10] Tian A, Xue X X, Liu C W, He J G, Yang Z D. Mater Lett, 2010; 64: 1197
[11] Matsushima H, Fukunaka Y, Ito Y, Bund A, Plieth W. J Electroanal Chem, 2006; 587: 93
[12] Matsushima H, Nohira T, Mogi I, Ito Y. Surf Coat Technol, 2004; 179: 245
[13] Hu F, Chan K C, Qu N S. J Solid State Electrochem, 2007; 11: 267
[14] Hu F, Chan K C, Song S Z, Yang X J. J Solid State Electrochem, 2007; 11: 745
[15] Yamada T, Asai S. J Jpn Inst Met, 2005; 69: 257
[16] Yamada T, Asai S. J Jpn Inst Met, 2001; 65: 910
[17] Zhong Y B, Long Q, Zhou P W, Sun Z Q, Zheng T X. Chin Pat, 201210327475.2, 2012
(钟云波, 龙琼, 周鹏伟, 孙宗乾, 郑天祥. 中国专利, 201210327475.2, 2012)
[18] Zhong Y B, Long Q, Liu C M, Li F, Wang H, Shen Z, Ren W L, Lei Z S.Chin Pat, 201310258003.0, 2013
(钟云波, 龙琼, 刘春梅, 李甫, 王怀, 沈喆, 任维丽, 雷作胜. 中国专利, 201310258003.0, 2013)
[19] Sun Z Q, Zhong Y B, Fan L J, Long Q, Zheng T X, Ren W L, Lei Z S, Wang Q L, Wang H, Dai Y M. Acta Phys Sin, 2013; 62: 136801
(孙宗乾, 钟云波, 范丽君, 龙琼, 郑天祥, 任维丽, 雷作胜, 王秋良, 王晖,戴银明. 物理学报, 2013; 62: 136801)
[20] Pan Y J, Zhang H, Wu X J. Plat Fin, 2004; 26(6): 13
(潘应君, 张恒, 吴新杰. 电镀与精饰, 2004; 26(6): 13)
[21] Peipmann R, Thomas J, Bund A. Electrochim Acta, 2003; 52: 5808
[22] Aogaki R, Morimoto R, Asanuma M. J~Magn Magn Mater, 2012; 322: 1664
[23] Tian H. Master Thesis, Qingdao University of Science and Technology, 2006
(田华. 青岛科技大学硕士学位论文, 2006)
[24] Wang C, Zhong Y B, Ren W L, Lei Z S, Ren Z M, Jia J, Jiang A R. Appl Surf Sci, 2008; 254: 5649
[25] Wang C, Zhong Y B, Wang J, Wang Z Q, Ren W L, Lei Z S, Ren Z M. J Electroanal Chem, 2009; 630: 42
[26] Guglielmi N. J Electrochem Soc, 1972; 119: 1009
No related articles found!