|
|
W中H行为的计算模拟研究 |
周洪波( ), 李宇浩, 吕广宏 |
北京航空航天大学物理科学与核能工程学院 北京 100191 |
|
Modeling and Simulation of Hydrogen Behavior in Tungsten |
Hongbo ZHOU( ), Yuhao LI, Guanghong LU |
School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China |
引用本文:
周洪波, 李宇浩, 吕广宏. W中H行为的计算模拟研究[J]. 金属学报, 2018, 54(2): 301-313.
Hongbo ZHOU,
Yuhao LI,
Guanghong LU.
Modeling and Simulation of Hydrogen Behavior in Tungsten[J]. Acta Metall Sin, 2018, 54(2): 301-313.
[1] | Dresselhaus M S, Thomas I L.Alternative energy technologies[J]. Nature, 2001, 414: 332 | [2] | Chu S, Majumdar A.Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488: 294 | [3] | Ongena J, Van Oost G.Energy for future centuries: Prospects for fusion power as a future energy source[J]. Fusion Sci. Technol., 2010, 57: 3 | [4] | Lehnert B.Half a century of fusion research towards ITER[J]. Phys. Scr., 2012, 87: 018201 | [5] | Barabash V, The ITER International Team, Peacock A, et al. Materials challenges for ITER—Current status and future activities[J]. J. Nucl. Mater., 2007, 367: 21 | [6] | Zinkle S J, Busby J T.Structural materials for fission & fusion energy[J]. Mater. Today, 2009, 12: 12 | [7] | Zinkle S J, Snead L L.Designing radiation resistance in materials for fusion energy[J]. Annu. Rev. Mater. Res., 2014, 44: 241 | [8] | Knaster J, Moeslang A, Muroga T.Materials research for fusion[J]. Nat. Phys., 2016, 12: 424 | [9] | Linsmeier C, Rieth M, Aktaa J, et al.Development of advanced high heat flux and plasma-facing materials[J]. Nucl. Fusion, 2017, 57: 092007 | [10] | Ueda Y, Schmid K, Balden M, et al.Baseline high heat flux and plasma facing materials for fusion[J]. Nucl. Fusion, 2017, 57: 092006 | [11] | Buzi L, De Temmerman G, Unterberg B, et al.Influence of tungsten microstructure and ion flux on deuterium plasma-induced surface modifications and deuterium retention[J]. J. Nucl. Mater., 2015, 463: 320 | [12] | Linsmeier Ch, Unterberg B, Coenen J W, et al.Material testing facilities and programs for plasma-facing component testing[J]. Nucl. Fusion, 2017, 57: 092012 | [13] | Zibrov M, Balden M, Morgan T W, et al.Deuterium trapping and surface modification of polycrystalline tungsten exposed to a high-flux plasma at high fluences[J]. Nucl. Fusion, 2017, 57: 046004 | [14] | Jia Y Z, Liu W, Xu B, et al.Subsurface deuterium bubble formation in W due to low-energy high flux deuterium plasma exposure[J]. Nucl. Fusion, 2017, 57: 034003 | [15] | Dudarev S L.Density functional theory models for radiation damage[J]. Annu. Rev. Mater. Res., 2013, 43: 35 | [16] | Lu G H, Zhou H B, Becquart C S.A review of modelling and simulation of hydrogen behaviour in tungsten at different scales[J]. Nucl. Fusion, 2014, 54: 086001 | [17] | Kresse G, Hafner J.Ab initio molecular dynamics for liquid metals[J]. Phys. Rev., 1993, 47B: 558 | [18] | Perdew J P, Burke K, Ernzerhof M.Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77: 3865 | [19] | Perdew J P, Wang Y.Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys. Rev., 1992, 45B: 13244 | [20] | Bl?chl P E.Projector augmented-wave method[J]. Phys. Rev., 1994, 50B: 17953 | [21] | Zhou H B, Liu Y L, Jin S, et al.Towards suppressing H blistering by investigating the physical origin of the H-He interaction in W[J]. Nucl. Fusion, 2010, 50: 115010 | [22] | Counts W A, Wolverton C, Gibala R.First-principles energetics of hydrogen traps in α-Fe: Point defects[J]. Acta Mater., 2010, 58: 4730 | [23] | Fernandez N, Ferro Y, Kato D.Hydrogen diffusion and vacancies formation in tungsten: Density functional theory calculations and statistical models[J]. Acta Mater., 2015, 94: 307 | [24] | Plimpton S.Fast parallel algorithms for short-range molecular dynamics[J]. J. Comput. Phys., 1995, 117: 1 | [25] | Li X C, Shu X, Liu Y N, et al.Modified analytical interatomic potential for a W-H system with defects[J]. J. Nucl. Mater., 2011, 408: 12 | [26] | Li X C, Shu X L, Liu Y N, et al.Analytical W-He and H-He interatomic potentials for a W-H-He system[J]. J. Nucl. Mater., 2012, 426: 31 | [27] | Wang L F, Shu X, Lu G H, et al.Embedded-atom method potential for modeling hydrogen and hydrogen-defect interaction in tungsten[J]. J. Phys.: Condens. Matter, 2017, 29: 435401 | [28] | Liu Y L, Zhang Y, Luo G N, et al. Structure, stability and diffusion of hydrogen in tungsten: A first-principles study [J]. J. Nucl. Mater., 2009, 390-391: 1032 | [29] | Li Y H, Zhou H B, Lu G H.Towards understanding the strong trapping effects of noble gas elements on hydrogen in tungsten[J]. Int. J. Hydrogen Energy, 2017, 42: 6902 | [30] | Kong X S, Wang S, Wu X, et al.First-principles calculations of hydrogen solution and diffusion in tungsten: Temperature and defect-trapping effects[J]. Acta Mater., 2015, 84: 426 | [31] | Liu Y N, Wu T F, Yu Y, et al.Hydrogen diffusion in tungsten: A molecular dynamics study[J]. J. Nucl. Mater., 2014, 455: 676 | [32] | Frauenfelder R.Solution and diffusion of hydrogen in tungsten[J]. J. Vac. Sci. Technol., 1969, 6: 388 | [33] | Qin S Y, Jin S, Sun L, et al.Hydrogen assisted vacancy formation in tungsten: A first-principles investigation[J]. J. Nucl. Mater., 2015, 465: 135 | [34] | Van A V, Filius H A, De Vries J, et al. Hydrogen exchange with voids in tungsten observed with TDS and PA [J]. J. Nucl. Mater., 1988, 155-157: 1113 | [35] | Shu W, Wakai E, Yamanishi T.Blister bursting and deuterium bursting release from tungsten exposed to high fluences of high flux and low energy deuterium plasma[J]. Nucl. Fusion, 2007, 47: 201 | [36] | Li W Y, Zhang Y, Zhou H B, et al.Stress effects on stability and diffusion of H in W: A first-principles study[J]. Nucl. Instrum. Meth. Phys. Res. Sec., 2011, 269B: 1731 | [37] | Zhou H B, Jin S, Zhang Y, et al.Anisotropic strain enhanced hydrogen solubility in bcc metals: The independence on the sign of strain[J]. Phys. Rev. Lett., 2012, 109: 135502 | [38] | Liu Y L, Zhou H B, Zhang Y, et al.The ideal tensile strength and deformation behavior of a tungsten single crystal[J]. Nucl. Instrum. Methods Phys. Res. Sec., 2009, 267B: 3282 | [39] | Liu Y L, Zhou H B, Jin S, et al.Effects of H on electronic structure and ideal tensile strength of W: A First-principles calculation[J]. Chin. Phys. Lett., 2010, 27: 127101 | [40] | Nielsen O H, Martin R M.Quantum-mechanical theory of stress and force[J]. Phys. Rev., 1985, 32B: 3780 | [41] | Liu Y L, Zhang Y, Zhou H B, et al.Vacancy trapping mechanism for hydrogen bubble formation in metal[J]. Phys. Rev., 2009, 79B: 172103 | [42] | Sun L, Jin S, Li X C, et al.Hydrogen behaviors in molybdenum and tungsten and a generic vacancy trapping mechanism for H bubble formation[J]. J. Nucl. Mater., 2013, 434: 395 | [43] | Sun L, Jin S, Zhou H B, et al.Critical concentration for hydrogen bubble formation in metals[J]. J. Phys.: Condens. Matter, 2014, 26: 395402 | [44] | Liu Y N, Ahlgren T, Bukonte L, et al.Mechanism of vacancy formation induced by hydrogen in tungsten[J]. AIP Adv., 2013, 3: 122111 | [45] | Qin S Y, Jin S, Niu L L, et al.The effect of hydrogen on the recombination of Frenkel pair in tungsten: A theoretical insight[J]. Sci. China Phys. Mech. Astron., 2017, 60: 067021 | [46] | Nguyen-Manh D, Horsfield A P, Dudarev S L.Self-interstitial atom defects in bcc transition metals: Group-specific trends[J]. Phys. Rev., 2006, 73B: 020101 | [47] | Haasz A A, Poon M, Davis J W. The effect of ion damage on deuterium trapping in tungsten [J]. J. Nucl. Mater., 1999, 266-269: 520 | [48] | González C, Panizo-Laiz M, Gordillo N, et al.H trapping and mobility in nanostructured tungsten grain boundaries: A combined experimental and theoretical approach[J]. Nucl. Fusion, 2015, 55: 113009 | [49] | Zhou H B, Liu Y L, Jin S, et al.Investigating behaviours of hydrogen in a tungsten grain boundary by first principles: From dissolution and diffusion to a trapping mechanism[J]. Nucl. Fusion, 2010, 50: 025016 | [50] | Zhou H B, Jin S, Zhang Y, et al.Effects of hydrogen on a tungsten grain boundary: A first-principles computational tensile test[J]. Prog. Nat. Sci.: Mater. Int., 2011, 21: 240 | [51] | Zhou H B, Jin S, Zhang Y, et al.First-principles study of carbon effects in a tungsten grain boundary: Site preference, segregation and strengthening[J]. Sci. China Phys. Mech. Astron., 2011, 54: 2164 | [52] | Yu Y, Shu X L, Liu Y N, et al.Molecular dynamics simulation of hydrogen dissolution and diffusion in a tungsten grain boundary[J]. J. Nucl. Mater., 2014, 455: 91 | [53] | Yu Y, Shu X L, Liu Y N, et al.Effect of hydrogen on grain boundary migration in tungsten[J]. Sci. China Phys. Mech. Astron., 2015, 58: 1 | [54] | Liu Y L, Gao A Y, Lu W, et al.Optimal electron density mechanism for hydrogen on the surface and at a vacancy in tungsten[J]. Chin. Phys. Lett., 2012, 29: 077101 | [55] | Sun L, Jin S, Lu G H, et al.High hydrogen retention in the sub-surfaces of tungsten plasma facing materials: A theoretical insight[J]. Scr. Metall., 2016, 122: 14 | [56] | Tokunaga K, Takayama M, Muroga T, et al.Depth profile analyses of implanted deuterium in tungsten by secondary ion mass spectrometry[J]. J. Nucl. Mater., 1995, 220: 800 | [57] | Roth J, Schmid K.Hydrogen in tungsten as plasma-facing material[J]. Phys. Scr., 2011, 145: 014031 | [58] | Nishijima D, Sugimoto T, Iwakiri H, et al.Characteristic changes of deuterium retention on tungsten surfaces due to low-energy helium plasma pre-exposure[J]. J. Nucl. Mater., 2005, 337: 927 | [59] | Baldwin M J, Doerner R P, Wampler W R, et al.Effect of He on D retention in W exposed to low-energy, high-fluence (D, He, Ar) mixture plasma[J]. Nucl. Fusion, 2011, 51: 103021 | [60] | Li Y H, Zhou H B, Jin S, et al.Strain-induced variation of electronic structure of helium in tungsten and its effects on dissolution and diffusion[J]. Comput. Mater. Sci., 2014, 95: 536 | [61] | Zhou H B, Liu Y L, Zhang Y, et al.First-principles investigation of energetics and site preference of He in a W grain boundary[J]. Nucl. Instrum. Methods Phys. Res. Sec., 2009, 267B: 3189 | [62] | Zhou H B, Ou X, Zhang Y, et al.Effect of carbon on helium trapping in tungsten: A first-principles investigation[J]. J. Nucl. Mater., 2013, 440: 338 | [63] | Wang X X, Zhang Y, Zhou H B, et al.Effects of niobium on helium behaviors in tungsten: A first-principles investigation[J]. Acta Phys. Sin., 2014, 63: 046103(王欣欣, 张颖, 周洪波等. 铌对钨中氦行为的影响的第一性原理研究[J]. 物理学报, 2014, 63: 046103) | [64] | Zhou H B, Jin S, Shu X L, et al.Stress tensor: A quantitative indicator of effective volume and stability of helium in metals[J]. Europhys. Lett., 2011, 96: 66001 | [65] | Zhou H B, Wang J L, Jiang W, et al.Electrophobic interaction induced impurity clustering in metals[J]. Acta Mater., 2016, 119: 1 | [66] | Jin S, Liu Y L, Zhou H B, et al.First-principles investigation on the effect of carbon on hydrogen trapping in tungsten[J]. J. Nucl. Mater., 2011, 415: S709 | [67] | Zhou H B, Momanyi N K, Li Y H, et al.Paving a way to suppress hydrogen blistering by investigating the hydrogen-beryllium interaction in tungsten[J]. RSC Adv., 2016, 6: 103622 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|