Please wait a minute...
金属学报  2020, Vol. 56 Issue (1): 99-111    DOI: 10.11900/0412.1961.2019.00006
  综述 本期目录 | 过刊浏览 |
外延膜的高分辨X射线衍射分析
李长记1,邹敏杰1,2,张磊1(),王元明1(),王甦程1
1. 中国科学院金属研究所沈阳材料科学国家研究中心 沈阳 110016
2. 中国科学技术大学材料科学与工程学院 沈阳 110016
High-Resolution X-Ray Diffraction Analysis of Epitaxial Films
LI Changji1,ZOU Minjie1,2,ZHANG Lei1(),WANG Yuanming1(),WANG Sucheng1
1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
全文: PDF(7818 KB)   HTML
摘要: 

广泛应用于半导体、铁电和光电材料中的外延结构特征以及应变和缺陷会影响外延膜的物理/化学性能。高分辨X射线衍射是对外延结构进行无损准确表征的关键技术。本文从高分辨X射线衍射与外延结构倒易空间的关系出发,重点阐述高分辨X射线衍射与普通X射线衍射的联系与区别,以强调高分辨X射线衍射特征。以铁电外延膜与衬底结构高分辨X射线衍射为例,系统分析它们的高分辨X射线衍射斑特征,包括共格生长、非共格生长、倾斜生长下衍射斑特征,以及外延膜的尺寸、外延膜的倾斜扭转和外延膜的应变对衍射斑的影响等。结合Si1-xGex(x=0.1)等外延膜结构的具体分析阐述如何通过高分辨X射线衍射谱来获取外延膜结构参数,包括外延膜晶格常数、晶格错配度以及厚度和超晶格等信息。本文还系统介绍了高分辨X射线衍射中的倒易平面图的作法,以及相关的理论和实验方法,并据此获得了PbTiO3外延膜的应力状态、畴结构、相变等结构信息。

关键词 薄膜生长外延膜高分辨X射线衍射倒易空间作图    
Abstract

Epitaxy technique has been widely used for semiconductor, ferroelectric and optical materials in the development of electronic and optoelectronic devices. Epitaxial structures with strain and defects may tune the physical properties or affect the performance of devices. High-resolution X-ray diffraction (HRXRD) has significant advantages over traditional XRD with the features of small divergence, monochromatic incident beam and high resolution detection of the diffracted beam. It is a key technique for accurate characterization of epitaxial structures in non-destructive way. In this paper, the techniques of HRXRD for epitaxial film structure characterization are outlined in terms of the relationship between diffraction and reciprocal space, the difference between high-resolution diffraction and powder diffraction such as the optical system and the geometry mode of scanning etc. Based on the corresponding relationship between the epitaxial film and the matrix structure in the reciprocal space, various factors affecting the shape of the diffraction spots are analyzed, including the state of lattice match in coherence and non-coherence, super lattice and inclined growth. The other effective factors are also demonstrated, such as finite size of film, tilt and strain of epitaxial film etc. Real examples, such as Si1-xGex(x=0.1) etc., are used to explain how to obtain the structure parameters of the epitaxial films by HRXRD spectrum analysis, including lattice constant, lattice mismatch, thickness and superlattice information. To obtain more epitaxy information, reciprocal space map (RSM) analysis can be feasibly used by reconstruction of a series of HRXRD patterns. By combining HRXRD spectrum and RSM, microstructure characterizations of PbTiO3 epitaxy films, such as micro-strain, domain structure, phase transformation can be quantitatively analyzed.

Key wordsfilm growth    epitaxial film    high-resolution X-ray diffraction    reciprocal space mapping
收稿日期: 2019-09-29     
ZTFLH:  TG142  
通讯作者: 张磊,王元明     E-mail: lzhang@imr.ac.cn;ymwang@imr.ac.cn
Corresponding author: Lei ZHANG,Yuanming WANG     E-mail: lzhang@imr.ac.cn;ymwang@imr.ac.cn
作者简介: 李长记,男,1987年生,博士

引用本文:

李长记,邹敏杰,张磊,王元明,王甦程. 外延膜的高分辨X射线衍射分析[J]. 金属学报, 2020, 56(1): 99-111.
Changji LI, Minjie ZOU, Lei ZHANG, Yuanming WANG, Sucheng WANG. High-Resolution X-Ray Diffraction Analysis of Epitaxial Films. Acta Metall Sin, 2020, 56(1): 99-111.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00006      或      https://www.ams.org.cn/CN/Y2020/V56/I1/99

图1  SrTiO3单晶的倒易空间与衍射条件示意图
图2  X射线粉末衍射和高分辨衍射的光路系统示意图
图3  样品与探测器的旋转轴
图4  扫描方式与衍射几何示意图
图5  立方结构外延膜和衬底的(h0l)倒易面
图6  影响衍射斑点宽化的因素
图7  立方Si1-xGex/Si外延膜(Layer)和衬底(Substrate)(004)面和(224)面衍射强度和2θ关系曲线
图8  沿ΔG的强度分布
图9  含有8个周期的(La0.3Sr0.7MnO3/PbTiO3)8/DyScO3超晶格结构(002)衍射强度与2θ关系曲线
图10  Si1-xGex/Si外延结构的低角X射线强度与2θ关系曲线
图11  非对称反射方法测定时角度差Δθ=θL-θS和Δτ=τL-τS的成因
图12  Si1-xGex /Si外延结构的(206)+和(206)-衍射强度与2θ关系曲线
图13  沿LaAlO3衬底[001]方向外延生长的PbTiO3薄膜组成的外延结构(010)倒易空间平面示意图
图14  PbTiO3/LaAlO3外延结构中衬底PbTiO3和外延膜中畴结构的(002)衍射斑的(010)倒易空间平面图的局部图
图15  PbTiO3/SrRuO3/SrTiO3外延结构和新相Pb2O3的(002)衍射斑的(010)倒易空间平面图的局部图
[1] Queisser H J, Haller E E. Defects in semiconductors: Some fatal, some vital [J]. Science, 1998, 281: 945
[2] Liu J F. SSMBE epitaxial growth and structure characterization of SiC thin films [D]. Hefei: University of Science and Technology of China, 2007
[2] (刘金峰. SiC薄膜的SSMBE外延生长及其结构表征 [D]. 合肥: 中国科学技术大学, 2007)
[3] Spaldin N A. Multiferroics: Past, present, and future [J]. MRS Bull., 2017, 42: 385
[4] Damodaran A R, Agar J C, Pandya S, et al. New modalities of strain-control of ferroelectric thin films [J]. J. Phys. Condens. Matter, 2016, 28: 263001
[5] Shang J. Preparation and laser induced thermoelectric votalge of ferroelctric thin films [D]. Kunming: Kunming University of Science and Technology, 2010
[5] (尚 杰. 铁电氧化物薄膜的制备及其激光感生电压效应 [D]. 昆明: 昆明理工大学, 2010)
[6] Birkholz M, Fewster P F, Genzel C. Thin Film Analysis by X-ray Scattering [M]. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2006: 303
[7] Gao G Y. Studies on the strain states and thickness effects of epitaxial (La1-xCax)MnO3 thin films [D]. Hefei: University of Science and Technology of China, 2008
[7] (高关胤. (La1-xCax)MnO3外延膜的应力与厚度效应研究 [D]. 合肥: 中国科学技术大学, 2008)
[8] Liu Y. Aberration corrected transmission electron microscopy investigation of domains and interfaces in ferroelectric thin films [D]. Beijing: University of Chinese Academy of Sciences, 2017
[8] (刘 颖. 铁电薄膜畴结构及界面结构的像差校正透射电子显微学研究 [D]. 北京: 中国科学院大学, 2017)
[9] Moram M A, Vickers M E. X-ray diffraction of III-nitrides [J]. Rep. Prog. Phys., 2009, 72: 036502
[10] Fewster P F. X-ray analysis of thin films and multilayers [J]. Rep. Prog. Phys., 1996, 59: 1339
[11] Li C R, Wu L J, Chen W C. Studies of the impurity effects on crystalline quality by high-resolution X-ray diffraction [J]. Acta Phys. Sin., 2001, 50: 2185
[11] (李超荣, 吴立军, 陈万春. 高分辨X射线衍射研究杂质对晶体结构完整性的影响 [J]. 物理学报, 2001, 50: 2185)
[12] Moram M A, Vickers M E, Kappers M J, et al. The effect of wafer curvature on X-ray rocking curves from gallium nitride films [J]. J. Appl. Phys., 2008, 103: 093528
[13] Mzoughi T, Fitouri H, Moussa I, et al. High resolution X-ray diffraction study of InAs layers grown with and without bismuth flow on GaAs substrates by metalorganic vapor phase epitaxy [J]. J. Alloys Compd., 2012, 524: 26
[14] Li X F, Zhang J W, Gao H K, et al. The analysis on the reciprocal space mapping of the AlGaAs/GaAs epitaxial layer in the transparent GaAs photocathode [J]. Acta Photon. Sin., 2002, 31: 312
[14] (李晓峰, 张景文, 高鸿楷等. 透射式GaAs光电阴极AlGaAs/GaAs外延层倒易点二维图分析 [J]. 光子学报, 2002, 31: 312)
[15] Fulthorpe B D, Ryan P A, Hase T P A, et al. High-resolution X-ray diffraction studies of roughness and mosaic defects in epitaxial Fe/Au multilayers [J]. J. Phys., 2001, 34D: A203
[16] Kopp V S, Kaganer V M, Jenichen B, et al. Analysis of reciprocal space maps of GaN(0001) films grown by molecular beam epitaxy [J]. J. Appl. Cryst., 2014, 47: 256
[17] Chen Y, Deng H, Ji H. Characterization of structure of GaN films by high resolution X-ray diffraction analysis [J]. Anal. Test. Technol. Inst., 2009, 15: 21
[17] (陈 勇, 邓 宏, 姬 洪. 利用高分辨X射线衍射仪表征GaN薄膜的结构特性 [J]. 分析测试技术与仪器, 2009, 15: 21)
[18] Yu G J, Xu M S, Hu X B, et al. High resolution X-ray diffraction analysis of GaN epitaxial layer grown on SiC substrate [J]. J. Synth. Cryst., 2014, 43: 1017
[18] (于国建, 徐明升, 胡小波等. SiC衬底上生长的GaN外延层的高分辨X射线衍射分析 [J]. 人工晶体学报, 2014, 43: 1017)
[19] Cui Y X, Xu M S, Xu X G, et al. High resolution X-ray diffraction analysis of defect density of gallium nitride epitaxial layer [J]. J. Inorg. Mater., 2015, 30: 1904
[19] (崔潆心, 徐明升, 徐现刚等. 高分辨X射线衍射表征氮化镓外延层缺陷密度 [J]. 无机材料学报, 2015, 30: 1904)
[20] Ayers J E. The measurement of threading dislocation densities in semiconductor crystals by X-ray diffraction [J]. J. Cryst. Growth, 1994, 135: 71
[21] Christen H M, Nam J H, Kim A J, et al. Stress-induced R-MA-MC-T symmetry changes in BiFeO3 films [J]. Phys. Rev., 2011, 83B: 144107
[22] Chen Z H, Luo Z L, Huang C W, et al. Low-symmetry monoclinic phases and polarization rotation path mediated by epitaxial strain in multiferroic BiFeO3 thin films [J]. Adv. Funct. Mater., 2011, 21: 133
[23] Mai Z H. Thin Film Structure Characterization by X-Ray [M]. Beijing: Science Press, 2007: 1, 11
[23] (麦振洪. 薄膜结构X射线表征 [M]. 北京: 科学出版社, 2007: 1, 11)
[24] Birkholz F C, Fewster P F, Genzel C. Thin Film Analysis by X-Ray Scattering [M]. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2006: 297
[25] Darakchieva V, Paskova T, Paskov P P, et al. Structural characteristics and lattice parameters of hydride vapor phase epitaxial GaN free-standing quasisubstrates [J]. J. Appl. Phys., 2005, 97: 013517
[26] Lee S R, West A M, Allerman A A, et al. Effect of threading dislocations on the Bragg peakwidths of GaN, AlGaN, and AlN heterolayers [J]. Appl. Phys. Lett., 2005, 86: 241904
[27] Macrander A T, Schwartz G P, Gualtieri G J. X-ray and Raman characterization of AlSb/GaSb strained layer superlattices and quasiperiodic Fibonacci lattices [J]. J. Appl. Phys., 1988, 64: 6733
[28] Paduano Q S, Weyburne D W, Drehman A J. An X-ray diffraction technique for analyzing structural defects including microstrain in nitride materials [J]. J. Cryst. Growth, 2011, 318: 418
[29] Paduano Q S, Weyburne D W, Drehman A J. An X-ray diffraction technique for analyzing basal-plane stacking faults in GaN [J]. Phys. Status Solidi, 2010, 207A: 2446
[30] Mariager S O, Lauridsen S L, Dohn A, et al. High-resolution three-dimensional reciprocal-space mapping of InAs nanowires [J]. J. Appl. Cryst., 2009, 42: 369
[31] Mariager S O, Schlepütz C M, Aagesen M, et al. High-resolution three-dimensional reciprocal space mapping of semiconductor nanostructures [J]. Phys. Status Solidi, 2009, 206A: 1771
[32] Cornelius T W, Davydok A, Jacques V L R, et al. In situ three-dimensional reciprocal-space mapping during mechanical deformation [J]. J. Synchrotron Rad., 2012, 19: 688
[33] Takahasi M, Nakata Y, Suzuki H, et al. In situ three-dimensional X-ray reciprocal-space mapping of GaAs epitaxial films on Si(001) [J]. J. Cryst. Growth, 2013, 378: 34
[34] Bauer S, Lazarev S, Bauer M, et al. Three-dimensional reciprocal space mapping with a two-dimensional detector as a low-latency tool for investigating the influence of growth parameters on defects in semipolar GaN [J]. J. Appl. Cryst., 2015, 48: 1000
[35] Sasaki T, Takahasi M, Suzuki H, et al. In situ three-dimensional X-ray reciprocal-space mapping of InGaAs multilayer structures grown on GaAs(001) by MBE [J]. J. Cryst. Growth, 2015, 425: 13
[36] Diffracplus Leptos (User Manual). Version 7. Karlsruhe: Bruker AXS GmbH., 2009
[37] Catalan G, Seidel J, Ramesh R, et al. Domain wall nanoelectronics [J]. Rev. Mod. Phys., 2012, 84: 119
[38] Luo Z L, Chen Z H, Yang Y J, et al. Periodic elastic nanodomains in ultrathin tetragonal-like BiFeO3 films [J]. Phys. Rev., 2013, 88B: 064103
[39] Catalan G, Janssens A, Rispens G, et al. Polar domains in lead titanate films under tensile strain [J]. Phys. Rev. Lett., 2006, 96: 127602
[40] Chen Z H, Liu J, Qi Y J, et al. 180° ferroelectric stripe nanodomains in BiFeO3 thin films [J]. Nano Lett., 2015, 15: 6506
[41] Barchuk M, Holy V, Kriegner D, et al. Diffuse x-ray scattering from stacking faults in a-plane GaN epitaxial layers [J]. Phys. Rev., 2011, 84B: 094113
[42] Moram M A, Johnston C F, Kappers M J, et al. Investigating stacking faults in nonpolar gallium nitride films using X-ray diffraction [J]. Physica, 2009, 404B: 2189
[43] Moram M A, Johnston C F, Hollander J L, et al. Understanding X-ray diffraction of nonpolar gallium nitride films [J]. J. Appl. Phys., 2009, 105: 113501
[1] 彭艳艳 余黎明 刘永长 马宗青 刘晨曦 李冲 李会军. 650 ℃时效对9Cr-ODS钢显微组织和性能的影响[J]. 金属学报, 0, (): 0-0.
[2] 曹铁山, 赵津艺, 程从前, 孟宪明, 赵杰. 冷变形和固溶温度对HR3C钢中σ相析出行为的影响[J]. 金属学报, 2020, 56(5): 673-682.
[3] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[4] 邓亚辉 杨银辉 蒲超博 倪珂 潘晓宇. Mn对23%Cr节Ni型双相不锈钢高温拉伸行为的影响[J]. 金属学报, 0, (): 0-0.
[5] 孙新军,刘罗锦,梁小凯,许帅,雍岐龙. 高钛耐磨钢中TiC析出行为及其对耐磨粒磨损性能的影响[J]. 金属学报, 2020, 56(4): 661-672.
[6] 彭云,宋亮,赵琳,马成勇,赵海燕,田志凌. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618.
[7] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[8] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[9] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[10] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.
[11] 王存宇,常颖,周峰峦,曹文全,董瀚,翁宇庆. 高强度高塑性第三代汽车钢的M3组织调控理论与技术[J]. 金属学报, 2020, 56(4): 400-410.
[12] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[13] 张哲峰,邵琛玮,王斌,杨浩坤,董福元,刘睿,张振军,张鹏. 孪生诱发塑性钢拉伸与疲劳性能及变形机制[J]. 金属学报, 2020, 56(4): 476-486.
[14] 罗海文,沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494-512.
[15] 董瀚,廉心桐,胡春东,陆恒昌,彭伟,赵洪山,徐德祥. 钢的高性能化理论与技术进展[J]. 金属学报, 2020, 56(4): 558-582.