Please wait a minute...
金属学报  2012, Vol. 48 Issue (7): 775-781    DOI: 10.3724/SP.J.1037.2012.00189
  论文 本期目录 | 过刊浏览 |
Nb对奥氏体热变形后等温回复的影响
聂文金1, 2), 尚成嘉1), 吴圣杰1), 施培建2), 程俊杰2), 张晓兵2)
1) 北京科技大学材料科学与工程学院, 北京 100083
2) 江苏沙钢集团有限公司总工办, 张家港 215625
EFFECTS OF Nb ON RECOVERY OF HOT-DEFORMED AUSTENITE
NIE Wenjin1, 2), SHANG Chengjia1), WU Shengjie1), SHI Peijian2), CHENG Junjie2), ZHANG Xiaobing2)
1) School of Material Science and Technology, University of Science and Technology Beijing, Beijing 100083
2) Chief engineer office, Jiangsu Sha Steel Group, Zhangjiagang 215625
全文: PDF(4877 KB)  
摘要: 采用热模拟实验研究了不同Nb含量的低C高Mn钢在800-900℃变形后奥氏体的回复特征, 同时借助 Fe-40%Ni-0.1%Nb(质量分数)合金揭示了回复过程中的位错演化及析出行为, 建立了位错滑移及溶质拖曳机制的等温回复动力学模型, 据此计算拟合了应力松弛曲线上回复实验数据, 计算结果与理论分析及实验结果相符. 实验及模拟结果表明, Nb溶质拖曳及析出均减慢回复过程, 提高变形积累; 与Nb溶质拖曳相比, 析出能够更有效地延缓回复软化; Nb溶质拖曳通过升高回复激活自由能U0及减小激活长度来实现回复过程的延缓, 提高溶质Nb含量, 将升高U0和减小激活长度. 对于含Nb低C高Mn微合金钢, 在道次间隔短的多道次热连轧精轧阶段, 变形积累主要依靠Nb溶质拖曳作用, 而对于轧制节奏较慢的中厚板精轧, 轧制变形的积累依靠Nb溶质拖曳与析出的共同作用.
关键词 Nb微合金化钢应力松弛回复溶质拖曳形变积累    
Abstract:Solute and precipitates of Nb can effectively affect stastic recrystallization and recoverry of austnite in steels during hot rolling process. However, more research is concerned about the role of Nb precipitation on the strain accumulation in finish rolling process, the solute drag effect of Nb is neglected comparing with precipitates. In this paper, the stress-relaxation curves of the low C high Mn steels with different Nb content were investigated by thermal simulation test, the evolution of dislocation and its interaction with Nb solute and precipitate during recovery process of deformed autentie in a Fe-40%Ni-0.1%Nb (mass fraction) modle steel was also studied by transmission electron microscopy (TEM). Thereby, a theoretical model about recovery of deformed austenite was developed according to the slip of dislocations and the solute drag. The values calculated by the model are consistent with the experimental results and the metallurgic principles. It is shown that both solute and precipitation of Nb can slow down the recovery and enhance the strain accumulation. The Nb solute drag can increase the activation free energy of the recovery U0 and decrease the activation length. It is believed that for Nb micro-alloyed steels with low C and high Mn, the strain accumulation during finish rolling process would be relied on the Nb solute drag effect in hot-strip mill, and both solute drag and precipitation pin effects in heavy plate mill.
Key wordsNb microalloyed steel    stress relaxing curve    recovery    solute drag    strain accumulation
收稿日期: 2012-04-10     
基金资助:

国家重点基础研究发展计划资助项目2010CB63080

通讯作者: 聂文金     E-mail: materialnwj@126.com
Corresponding author: Wen-Jin NIE     E-mail: materialnwj@126.com
作者简介: 聂文金, 男, 1978年生, 博士生

引用本文:

聂文金 尚成嘉 吴圣杰 施培建 程俊杰 张晓兵. Nb对奥氏体热变形后等温回复的影响[J]. 金属学报, 2012, 48(7): 775-781.
ZHE Wen-Jin, CHANG Cheng-Jia, WU Ku-Jie, YI Pei-Jian, CHENG Jun-Jie, ZHANG Xiao-Bing. EFFECTS OF Nb ON RECOVERY OF HOT-DEFORMED AUSTENITE. Acta Metall Sin, 2012, 48(7): 775-781.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2012.00189      或      https://www.ams.org.cn/CN/Y2012/V48/I7/775

[1] Cuddy L J. Proceedings of an International Conference on the Themo-Mechanically Processing of Microalloyed Austenite, Metallurgical Society of AIME, 1981: 129

[2] DeArdo A J, Gray J M, Meyer L. In: Stuart H ed., Fundamental Metallurgy of Niobium in Steel, Niobium: AIME, 1981: 685

[3] Miao C L, Shang C J, Zhang G D, Zhu G H, Zurob H S, Subramanian S V. Frontiers Mater Sci China, 2010; 4: 197

[4] Miao C L, Shang C J, Zhang G D, Subramanian S V. Mater Sci Eng, 2010; A527: 4985

[5] Zurob H S, Zhu G, Subramanian S V, Purdy G R, Hutchinson C R, Brechet Y. ISIJ Int, 2005; 45: 713

[6] Zurob H S, Zhu G, Subramanian S V, Purdy G R, Hutchinson C R, Brechet Y. Mater Sci Forum, 2005; 500–501: 123

[7] Hutchinson C R, Zurob H S, Sinclair C W, Brechet Y. Scr Mater, 2008; 59: 635

[8] Nie W J, Xin W F, Xu T M, Shi P J, Zhang X B. Adv Mater Res, 2011; 194–196: 1183

[9] Nie W J, Wang Z F, Li R, Li Y C, Zhang X B. Iron Steel, 2009; 44(8): 76

(聂文金, 王志福, 李冉, 李玉藏, 张晓兵. 钢铁, 2009; 44(8): 76)

[10] Yoshitaka A. In: Enomoto M ed., New Structure Steels and New Design of Conatructions, 6th Workshop on the Ultra–Steel, Tsukuba: The Iron and Steel Institute of Japan, 2002: 91

[11] Liu W J, Jonas J J. Metall MaterTrans, 1988; 19A: 1403

[12] Yang S W, Shang C J, Wang X M, He X L. J Univ Sci Technol Beijing, 2001; 3: 214

[13] Yuan S Q, Yang S W, Shang C J, He X L. Mater Sci Forum, 2003; 426–432: 1307

[14] Yuan S Q, Yang S W, NieWJ, He X L. J Univ Sci Technol Beijing, 2003; 10: 76

[15] Yuan S Q, Yang S W, Nie W J, He X L. Acta Metall Sin, 2004; 40: 887

(苑少强, 杨善武, 聂文金, 贺信莱. 金属学报, 2004; 40: 887)

[16] Karjalainen L P, Perttula J. ISIJ Int, 1996; 36: 729

[17] Zhao J S. Theory Basis of Dislocations, Beijing: National Defence Industry Press, 1989: 125

(赵敬世. 位错理论基础, 北京: 国防工业出版社, 1989: 125)

[18] Verdier M, Brechet Y, Guyot P. Acta Mater, 1999; 47: 127

[19] Feng D. Physics of Metals, Vol.3, Beijing: Science Press, 2000: 373

(冯端, 金属物理学, 第三卷, 北京: 科学出版社, 2000: 373)

[20] Frost H J, Ashby M F. Deformation Mechanism Maps, Oxford: Pergamon Press, 1982: 21

[21] Furu T, Qrsund R, Nes E. Acta Metall Mater, 1995; 43: 2209

[22] Zurob H S, Hutchinson C R, Brechet Y, Purdy G R. Acta Mater, 2002; 50: 3075

[23] Feng D. Physics of Metals, Vol.1, Beijing: Science Press, 2000: 543

(冯端, 金属物理学, 第一卷, 北京: 科学出版社, 2000: 543)

[24] Friedel J. Dislocations. Oxford: Pergamon Press, 1964: 187

[25] Liu W J. Metall Mater Trans, 1995; 26A: 1641

[26] Hou H X, Yang Y, Zhang T, Liu M. Iron Steel, 2009; 44(8): 72

(侯华兴, 杨 颖, 张涛, 刘 明. 钢铁, 2009; 44(8): 72)
[1] 江河,董建新,张麦仓,姚志浩,杨静. 服役条件下镍基高温合金应力松弛微观机制[J]. 金属学报, 2019, 55(9): 1211-1220.
[2] 史俊勤,孙琨,方亮,许少锋. 含水条件下单晶Cu的应力松弛及弹性恢复[J]. 金属学报, 2019, 55(8): 1034-1040.
[3] 何卫锋, 李翔, 聂祥樊, 李应红, 罗思海. 钛合金薄壁构件激光冲击残余应力稳定性研究[J]. 金属学报, 2018, 54(3): 411-418.
[4] 张飞, 沈健, 闫晓东, 孙建林, 蒋呐, 周华. 2099合金热变形过程中的动态软化机制*[J]. 金属学报, 2014, 50(6): 691-699.
[5] 冯瑞, 张美汉, 陈乃录, 左训伟, 戎咏华. 应力松弛对应变诱发马氏体相变影响的有限元模拟*[J]. 金属学报, 2014, 50(4): 498-506.
[6] 曹铁山, 方旭东, 程从前, 赵杰. 应力松弛方法研究2种HR3C耐热钢的高温蠕变行为[J]. 金属学报, 2014, 50(11): 1343-1349.
[7] 田宇兴 李述军 郝玉琳 杨锐. Ti2448合金高温变形行为及组织演变机制的转变[J]. 金属学报, 2012, 48(7): 837-844.
[8] 高古辉 张寒 白秉哲. 回火温度对Mn系低碳贝氏体钢的低温韧性的影响[J]. 金属学报, 2011, 47(5): 513-519.
[9] 付立铭 单爱党 王巍. 低碳Nb微合金钢中Nb溶质拖曳和析出相NbC钉扎对再结晶晶粒长大的影响[J]. 金属学报, 2010, 46(7): 832-837.
[10] 申坤 汪明朴 郭明星 李树梅. Cu--0.23%Al2O3弥散强化铜合金的高温变形特性研究[J]. 金属学报, 2009, 45(5): 597-604.
[11] 谭军 李聪 孙超 应诗浩 连姗姗 阚细武 冯可芹. Zr--4合金应力松弛过程中的热激活变形与动态应变时效[J]. 金属学报, 2009, 45(2): 173-177.
[12] 张继旺 鲁连涛 张卫华. 微粒子喷丸中碳钢疲劳性能分析[J]. 金属学报, 2009, 45(11): 1378-1383.
[13] 陈立佳; 吴崴; P.K.Liaw . 3种高温合金的蠕变-疲劳交互作用行为及寿命预测[J]. 金属学报, 2006, 42(9): 952-958 .
[14] 王卫国; 周邦新; 冯柳; 张欣; 夏爽 . 冷轧变形Pb--Ca--Sn--Al合金在回复和再结晶过程中的晶界特征分布[J]. 金属学报, 2006, 42(7): 715-721 .
[15] 崔传勇; 郭建亭; 齐义辉; 叶恒强 . 定向凝固NiAl多相合金的高温超塑性研究[J]. 金属学报, 2002, 38(7): 679-683 .