|
|
FB2马氏体耐热钢在焊接热作用下奥氏体相变过程研究 |
李克俭1,蔡志鹏1,2,3( ),吴瑶4,潘际銮1 |
1 清华大学机械工程系 北京 100084 2 清华大学摩擦学国家重点实验室 北京 100084 3 先进核能协同创新中心 北京 100084 4 清华大学天津高端装备研究院 天津 300304 |
|
Research on Austenite Transformation of FB2 Heat-Resistant Steel During Welding Heating Process |
Kejian LI1,Zhipeng CAI1,2,3( ),Yao WU4,Jiluan PAN1 |
1 Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China 2 State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China 3 Collaborative Innovation Center of Advanced Nuclear Energy Technology, Beijing 100084, China 4 Tsinghua University Research Institute for Advanced Equipment, Tianjin 300304, China |
引用本文:
李克俭,蔡志鹏,吴瑶,潘际銮. FB2马氏体耐热钢在焊接热作用下奥氏体相变过程研究[J]. 金属学报, 2017, 53(7): 778-788.
Kejian LI,
Zhipeng CAI,
Yao WU,
Jiluan PAN.
Research on Austenite Transformation of FB2 Heat-Resistant Steel During Welding Heating Process[J]. Acta Metall Sin, 2017, 53(7): 778-788.
[1] | Lo K H, Shek C H, Lai J K L. Recent developments in stainless steels[J]. Mater. Sci. Eng., 2009, R65: 39 | [2] | Fujita T.Current progress in advanced high Cr ferritic steels for high-temperature applications[J]. ISIJ Int., 1992, 32: 175 | [3] | Semba H, Abe F.Alloy design and creep strength of advanced 9%Cr USC boiler steels containing high concentration of boron[J]. Energy Mater., 2006, 1: 238 | [4] | Albert S K, Kondo M, Tabuchi M, et al.Improving the creep properties of 9Cr-3W-3Co-NbV steels and their weld joints by the addition of boron[J]. Metall. Mater. Trans., 2005, 36A: 333 | [5] | Abe F, Tabuchi M, Tsukamoto S, et al. Microstructure evolution in HAZ and suppression of type IV fracture in advanced ferritic power plant steels [J]. Int. J. Press. Vessels Piping, 2010, 87: 598 | [6] | Kondo M, Tabuchi M, Tsukamoto S, et al.Suppressing type IV failure via modification of heat affected zone microstructures using high boron content in 9Cr heat resistant steel welded joints[J]. Sci. Technol. Weld. Join., 2006, 11: 216 | [7] | Abson D J, Rothwell J S.Review of type IV cracking of weldments in 9-12%Cr creep strength enhanced ferritic steels[J]. Int. Mater. Rev., 2013, 58: 437 | [8] | Francis J A, Mazur W, Bhadeshia H K D H. Review type IV cracking in ferritic power plant steels[J]. Mater. Sci. Technol., 2006, 22: 1387 | [9] | Shirane T, Tsukamoto S, Tsuzaki K, et al.Ferrite to austenite reverse transformation process in B containing 9%Cr heat resistant steel HAZ[J]. Sci. Technol. Weld. Join., 2009, 14: 698 | [10] | Das C R, Albert S K, Swaminathan J, et al.Transition of crack from type IV to type II resulting from improved utilization of boron in the modified 9Cr-1Mo steel weldment[J]. Metall. Mater. Trans., 2012, 43A: 3724 | [11] | Das C R, Bhaduri A K, Lakshmi S, et al.Influence of boron and nitrogen on microstructure and hardness of heat-affected zone of modified 9Cr-1Mo steel——gleeble simulation study[J]. Weld. World, 2015, 59: 513 | [12] | Mayr P.Evolution of microstructure and mechanical properties of the heat affected zone in B-containing 9% chromium steels [D]. Graz: Graz University of Technology, 2007 | [13] | Kimmins S T, Gooch D J.Austenite memory effect in 1Cr-1Mo-0.75V(Ti, B) steel[J]. Met. Sci., 1983, 17: 519 | [14] | Cai Q G, Zhu J, He C Z.Aging structure of maraging steel[J]. Acta Phys. Sin., 1974, 23: 178 | [14] | (蔡其巩, 朱静, 何崇智. 马氏体时效钢的时效结构[J]. 物理学报, 1974, 23: 178) | [15] | Kessler H, Pitsch W.On the nature of the martensite to austenite reverse transformation[J]. Acta Metall., 1967, 15: 401 | [16] | Banerjee B R, Hauser J J, Capenos J M.Role of cobalt in the marage-type alloy matrix[J]. Met. Sci. J., 1968, 2: 76 | [17] | Apple C A, Krauss G.The effect of heating rate on the martensite to austenite transformation in Fe-Ni-C alloys[J]. Acta Metall., 1972, 20: 849 | [18] | Lee S J, Park Y M, Lee Y K.Reverse transformation mechanism of martensite to austenite in a metastable austenitic alloy[J]. Mater. Sci. Eng., 2009, A515: 32 | [19] | Liu Z C, Ren H P, An S L, et al.Martensite Transformation [M]. Beijing: Science Press, 2012: 25 | [19] | (刘宗昌, 任慧平, 安胜利等. 马氏体相变 [M]. 北京: 科学出版社, 2012: 25) | [20] | Karlyn D A, Cahn J W, Cohen M.The massive transformation in copper-zinc alloys [A]. The Selected Works of John W. Cahn[M]. Warrendale, Pennsylvania: TMS, 1969: 237 | [21] | Dayananda M A.6.2 Solutions of diffusion equations for constant ternary interdiffusion coefficients [A]. Mehrer H. Diffusion in Solid Metals and Alloys[M]. Berlin Heidelberg: Springer, 1990, 26: 372. | [22] | Zhao L, Jing H Y, Xu L Y, et al.Investigation on mechanism of type IV cracking in P92 steel at 650 ℃[J]. J. Mater. Res., 2011, 26: 934 | [23] | Abe F, Kern T U, Viswanathan R.Creep-Resistant Steels [M]. New York: CRC Press, 2008: 243 | [24] | Zhou Z F, Zhang W Y.Welding Metallurgy and Metal Weldability [M]. 2nd Ed., Beijing: China Machine Press, 1988: 207 | [24] | (周振丰, 张文钺. 焊接冶金与金属焊接性 [M]. 第2版, 北京: 机械工业出版社, 1988: 207) | [25] | Abe F.Effect of boron on microstructure and creep strength of advanced ferritic power plant steels[J]. Procedia Eng., 2011, 10: 94 | [26] | Wang X M, He X L.Effect of boron addition on structure and properties of low carbon bainitic steels[J]. ISIJ Int., 2002, 42: S38 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|