Please wait a minute...
金属学报  2016, Vol. 52 Issue (9): 1079-1088    DOI: 10.11900/0412.1961.2015.00555
  论文 本期目录 | 过刊浏览 |
TiAl预合金粉末热等静压致密化机理及热处理对微观组织的影响*
王刚1,徐磊2,崔玉友2(),杨锐2
1 营口理工学院机电系, 营口 115003
2 中国科学院金属研究所, 沈阳 110016
DENSIFICATION MECHANISM OF TiAl PRE-ALLOY POWDERS CONSOLIDATED BY HOT ISOSTATIC PRESSING AND EFFECTS OF HEAT TREATMENTON THE MICROSTRUCTURE OF TiAl POWDER COMPACTS
Gang WANG1,Lei XU2,Yuyou CUI2(),Rui YANG2
1 Yingkou Institute of Technology, Yingkou 115003, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

王刚,徐磊,崔玉友,杨锐. TiAl预合金粉末热等静压致密化机理及热处理对微观组织的影响*[J]. 金属学报, 2016, 52(9): 1079-1088.
Gang WANG, Lei XU, Yuyou CUI, Rui YANG. DENSIFICATION MECHANISM OF TiAl PRE-ALLOY POWDERS CONSOLIDATED BY HOT ISOSTATIC PRESSING AND EFFECTS OF HEAT TREATMENTON THE MICROSTRUCTURE OF TiAl POWDER COMPACTS[J]. Acta Metall Sin, 2016, 52(9): 1079-1088.

全文: PDF(2019 KB)   HTML
摘要: 

采用感应熔炼气体雾化法(EIGA)制备了Ti-47Al-2Cr-2Nb-0.2W-0.15B (原子分数, %, 下同)和Ti-45Al-8Nb-0.2Si-0.3B 2种TiAl预合金粉末, 应用SEM, OM和DSC对预合金粉末进行表征. 对TiAl预合金粉末进行热等静压致密化处理, 随后对致密化所得TiAl合金进行热处理, 研究了不同时效温度和冷却速率对TiAl合金微观组织的影响. 结果表明, 预合金粉末的冷却速率在105~106 K/s之间, 随着冷却速率的增加, 预合金粉末雾化过程中出现βα'的马氏体转变. DSC曲线表明, 升温过程中在700~800 ℃之间发生亚稳α2相→γ相的转变. 在热等静压过程中, 预合金粉末初始阶段随机堆积, 通过粉末颗粒流动、转动和重排实现致密度的提高. 随着温度升高α2相转变为γ相; 温度进一步升高, 粉末颗粒发生显著塑性变形, 颗粒间形成烧结颈. 随着保温时间的延长, 粉末间孔隙主要通过表面扩散、体积扩散和扩散蠕变连接方式完成闭合. Ti-47Al-2Cr-2Nb-0.2W-0.15B预合金粉末热等静压致密化后, 其微观组织主要为细小等轴的γ相组织, 以及少量的α2相和β相. Ti-45Al-8Nb-0.2Si-0.3B预合金粉末热等静压致密化后, 其微观组织主要为细小等轴的γ相组织, 以及少量的α2相和弥散分布的硅化物ξ-Nb5Si3. 时效温度不同, 等轴γ相、等轴α2相和α2/γ片层之间面积分数发生变化, 其变化规律主要取决于各相的Gibbs自由能变化. 冷却速率对Ti-47Al-2Cr-2Nb-0.2W-0.15B和Ti-45Al-8Nb-0.2Si-0.3B合金连续冷却相变有较大的影响. 对于 Ti-47Al-2Cr-2Nb-0.2W-0.15B 合金, 水冷主要形成等轴α2相, 油冷、空冷和炉冷都形成全片层组织. 对于Ti-45Al-8Nb-0.2Si-0.3B合金, 水冷形成α2相和γm相, 油冷和空冷形成羽毛状、Widmanst?tten片层和α2/γ片层混合组织, 炉冷形成全片层组织. 对比2种TiAl合金连续冷却曲线可知, Nb元素的增加使得连续冷却曲线向无扩散型转变方向发展.

关键词 TiAl合金热处理微观组织相变    
Abstract

Owing to the low density, high strength, good creep properties at elevated temperatures, TiAl alloy is considered for high temperature applications in aerospace industries. However, a major issue to the industrial applications is the alloy's intrinsic brittleness at room temperature. Therefore, extensive efforts have been made to overcome this defect by near net shape fabrication techniques. An alternative for fabricating TiAl alloy is the powder metallurgy processing of pre-alloyed powders, and by this technique TiAl alloy with fine and homogenous microstructure can be obtained. In this work, TiAl pre-alloyed powders with nominal composition Ti-47Al-2Cr-2Nb-0.2W-0.15B (atomic fraction, %) and Ti-45Al-8Nb-0.2Si-0.3B are produced by electrode induction melting gas atomization (EIGA). The pre-alloyed powders are consolidated by hot isostatic pressing (HIP). The effects of heat treatment on the microstructure of TiAl compacts and the influence of cooling rate on the solid-state transformations which occurs during continuous cooling of the TiAl compacts have been studied. It is found that the cooling rate of the pre-alloyed powders is between 105~106 K/s. As the cooling rate increases, the martensitic transformation, i.e., βα' occurs in some fine pre-alloyed powders. The heating DSC curves indicate that the transformation from α2 phase to γ phase takes place between 700~800 ℃. During the HIP processing, the pre-alloyed powders particles randomly accumulate, and the relative density of HIP compact is increased by the particles moving, rotating and rearranging at the initial stage. As the temperature increases, α2 phase transforms into γ phase. With further temperature increasing, significant plastic deformation and the following formation of sintering necks occur in the powder particles. With the annealing time increasing, the pores between the particles are closed by means of surface diffusion, volume diffusion and diffusion creep. The microstructure of Ti-47Al-2Cr-2Nb-0.2W-0.15B powder compacts consists of fine γ and a small number of α2 and β; and the microstructure of Ti-45Al-8Nb-0.2Si-0.3B powder compacts consists of fine γ phase, a small number of α2 phase and dispersed ξ-Nb5Si3 phase. The area fractions of γ phase, α2 phase and α2/γ lamellar structures vary with the annealing temperatures, depending on the Gibbs free energies of the phases. The cooling rate has a significant effect on the continuous cooling transformation of both TiAl powder compacts. For Ti-47Al-2Cr-2Nb-0.2W-0.15B alloy, the microstructure is composed of predominant equiaxed α2 phase after water cooling, but of lamellar structures after air, oil or furnace cooling. For Ti-45Al-8Nb-0.2Si-0.3B alloy, the microstructure is composed of γm phase and large α2 phase after water cooling; after oil and air cooling the alloy consists of a mix of feathery like structures, Widmanst?tten laths and lamellar structures; while furnace cooling leads to fully lamellar structures. Comparing the continuous cooling transformation curves, the increase of Nb can effectively extend the continuous cooling transformation to the diffusionless area.

Key wordsTiAl alloy    heat treatment    microstructure    phase transformation
收稿日期: 2015-10-30     
基金资助:* 辽宁省高等学校科学研究资助项目L2014598
图1  Ti-47Al-2Cr-2Nb-0.2W-0.15B预合金粉末XRD谱
图2  Ti-47Al-2Cr-2Nb-0.2W-0.15B预合金粉末颗粒微观形貌
图3  Ti-47Al-2Cr-2Nb-0.2W-0.15B预合金粉末的直径与冷却速率之间的关系
图 4  TiAl预合金粉末在冷却速率为10 ℃/ min时的DSC曲线
图5  Ti-47Al-2Cr-2Nb-0.2W-0.15B预合金粉末热等静压后的微观组织
Area Ti Al Cr Nb W
A 51.20 44.53 1.74 2.30 0.23
B 57.35 37.12 3.03 2.23 0.28
C 50.90 37.07 8.58 2.09 1.35
表1  Ti-47Al-2Cr-2Nb-0.2W-0.15B合金不同区域的EDS分析
图6  Ti-45Al-8Nb-0.2Si-0.3B预合金粉末热等静压后微观组织
图7  Ti-47Al-2Cr-2Nb-0.2W-0.15B合金在不同温度时效2 h后的SEM-BSE像
图8  Ti-47Al-2Cr-2Nb-0.2W-0.15B合金中各相在不同温度时效2 h后的变化
图9  Ti-45Al-8Nb-0.2Si-0.3B合金在不同温度时效2 h后的SEM-BSE像
图10  Ti-47Al-2Cr-2Nb-0.2W-0.15B合金以不同方式冷却后微观组织的OM像
图11  Ti-45Al-8Nb-0.2Si-0.3B合金以不同方式冷却后微观组织的OM像
图12  TiAl预合金粉末热等静压致密化示意图
图13  部分致密化Ti-47Al-2Cr-2Nb-0.2W-0.15B合金微观组织的OM像
图14  TiAl 合金的CCT曲线示意图
[1] Schmoelzer T, Liss K D, Kirchlechner C, Mayer S, Stark A, Peel M, Clemens H.Intermetallics, 2013; 39: 25
[2] Gupta R K, Pant B, Sinha P P.Trans Indian Inst Met, 2014; 67: 143
[3] Wang H, Zhou M X, Wu B H, Li X Q.Aeronaut Manuf Tech, 2015; (22): 47
[3] (王辉, 周明星, 吴宝海, 李小强. 航空制造技术, 2015; (22): 47)
[4] Gussone J, Hagedorn Y C, Gherekhloo H, Kasperovich G, Merzouk T, Hausmann J.Intermetallics, 2015; 66: 133
[5] Wang J W, Wang Y, Liu Y, Li J B, He L Z, Zhang C.Intermetallics, 2015; 64: 70
[6] Wang S R, Guo P Q, Yang L Y.J Mater Process Technol, 2008; 204: 492
[7] Imayev V, Oleneva T, Imayev R, Christ H J, Fecht H J.Intermetallics, 2012; 26: 91
[8] Kong F T, Xiao S L, Chen Y Y, Li B H.Rare Met Mater Eng, 2009; 38: 25
[8] (孔凡涛, 肖树龙, 陈玉勇, 李宝辉. 稀有金属材料与工程, 2009; 38: 25)
[9] Schwaighofer E, Clemens H, Mayer S, Lindemann J, Klose J, Smarsly W, Güther V.Intermetallics, 2014; 44: 128
[10] Wang G, Zheng Z, Chang L T, Xu L, Cui Y Y, Yang R.Acta Metall Sin, 2011; 47: 1263
[10] (王刚, 郑卓, 常立涛, 徐磊, 崔玉友, 杨锐. 金属学报, 2011; 47: 1263)
[11] Jabbar H, Couret A, Durand L, Monchoux J P. J Alloys Compd, 2011; 509: 9826
[12] Guyon J, Hazotte A, Monchoux J P, Bouzy E.Intermetallics, 2013; 34: 94
[13] Nishida M, Morizono Y, Kai T, Sugimoto J, Chiba A, Kumagae R.Mater Trans JIM, 1997; 38: 334
[14] Choi B W, Deng Y G, McCullough C, Paden B, Mehrabian R.Acta Metall Mater, 1990; 38: 2225
[15] Chai L H.PhD Dissertation,Harbin Institute of Technology, 2010
[15] (柴丽华. 哈尔滨工业大学博士学位论文, 2010)
[16] Habel U, McTiernan B J.Intermetallics, 2004; 12: 63
[17] Hao Y L, Yang R, Cui Y Y, Li D.Acta Mater, 2000; 48: 1313
[18] Schlesinger M E, Okamoto H, Gokhale A B, Abbaschian R.J Phase Equilib, 1993; 14: 502
[19] Dong L M, Cui Y Y, Yang R, Wang F H.Acta Metall Sin, 2004; 40: 383
[19] (董利民, 崔玉友, 杨锐, 王福会. 金属学报, 2004; 40: 383)
[20] Zhou L Z, Guo J T, Xiao X, Lupinc V, Maldini M.Acta Metall Sin, 2002; 38: 1175
[20] (周兰章, 郭建亭, 肖旋, Lupinc V, Maldini M. 金属学报, 2002; 38: 1175)
[21] Adams A G, Rahaman M N, Dutton R E.Mater Sci Eng, 2008; A477: 137
[22] Zhang X D, Dean T A, Loretto M H.Acta Metall Mater, 1994; 42: 2035
[23] Dey S R, Hazotte A, Bouzy E.Intermetallics, 2009; 17: 1052
[24] Denquin A, Naka S.Acta Mater, 1996; 44: 343
[25] Schaeffer R J, Janowski G M.Acta Metall Mater, 1992; 40: 1645
[26] Huang P Y. Powder Metallurgy.Beijing: Metallurgy Industry Press, 1997: 287
[26] (黄培云. 粉末冶金原理. 北京: 冶金工业出版社, 1997: 287)
[27] Berteaux O, Popoff F, Thomas M.Metall Mater Trans, 2008; 39A: 2281
[28] Ramanujan R V.Int Mater Rev, 2000; 45: 217
[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[3] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[4] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[5] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[6] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[7] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[8] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[9] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[10] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[11] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[12] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[13] 杨累, 赵帆, 姜磊, 谢建新. 机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发[J]. 金属学报, 2023, 59(11): 1499-1512.
[14] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[15] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.