Please wait a minute...
金属学报  2015, Vol. 51 Issue (7): 807-814    DOI: 10.11900/0412.1961.2014.00592
  本期目录 | 过刊浏览 |
760 ℃长期时效对一种Ni-Cr-W-Fe合金组织和力学性能的影响*
郝宪朝,张龙,熊超,马颖澈(),刘奎
EFFECT OF LONG-TERM AGING AT 760 ℃ ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A Ni-Cr-W-Fe ALLOY
Xianchao HAO,Long ZHANG,Chao XIONG,Yingche MA(),Kui LIU
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

郝宪朝,张龙,熊超,马颖澈,刘奎. 760 ℃长期时效对一种Ni-Cr-W-Fe合金组织和力学性能的影响*[J]. 金属学报, 2015, 51(7): 807-814.
Xianchao HAO, Long ZHANG, Chao XIONG, Yingche MA, Kui LIU. EFFECT OF LONG-TERM AGING AT 760 ℃ ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A Ni-Cr-W-Fe ALLOY[J]. Acta Metall Sin, 2015, 51(7): 807-814.

全文: PDF(7294 KB)   HTML
摘要: 

采用OM, SEM和TEM研究了一种Ni-Cr-W-Fe合金在760 ℃长期时效过程中的显微组织变化, 测试了合金室温和高温力学性能, 对拉伸断口进行了分析. 结果表明, 1100 ℃固溶后合金平均晶粒尺寸约为80 mm, 晶内包含退火孪晶. 760 ℃时效后合金中析出M23C6g' 相. g' 相尺寸约为29 nm, 体积分数约为19%. 760 ℃长期时效后, g' 颗粒平均尺寸与时间t满足Ostwald方程. 固溶态合金具有优异的室温塑性, 拉伸断口具有韧性断裂形貌. 时效态合金室温屈服强度明显增加, 塑性下降. 随760 ℃保温时间延长, 合金室温和高温屈服强度缓慢降低. 与时效态合金相比, 1000~3000 h时效后的合金室温塑性降低, 高温塑性维持在15%左右, 与时效态基本相当.

关键词 Ni-Cr-W-Fe合金长期时效g' 拉伸性能    
Abstract

Significant efforts on development of advanced ultra-supercritical (A-USC) fossil fired power plants with steam conditions of 700 ℃ and 30 MPa or higher have been made in recent years. The most important consideration is the development of materials for superheater and reheater tubes with working temperature as high as 760 ℃. During the design and application of these materials, phase stability, creep rupture strength and corrosion performance at 700~760 ℃ should be evaluated. A new type Ni-Cr-W-Fe alloy has been designed for A-USC power plants and the microstructure and mechanical properties of Ni-Cr-W-Fe alloy after long-term aging at 760 ℃ was investigated using OM, SEM, TEM and tensile testing in this work. The fractographs of tensile samples were observed. The results show that the average gain size of specimen after solution-annealing at 1100 ℃ is about 80 μm with twin planes present in the matrix. The major precipitates after aging at 760 ℃ for 16 h are M23C6 and g'. The average particle size and the volume fraction of g' phase are approximately 29 nm and 19%, respectively. The coarsening behavior of g' during long-term aging at 760 ℃ follows Ostwald ripening theory. The solution-annealed Ni-Cr-W-Fe alloy performs excellent ductility at room temperature and the fracture mode of is ductile. The room temperature tensile strengths increase obviously with the decreasing of elongation and reduction of area after aging treatment. The yield strengths at both room and elevated temperatures decrease gradually with the extending aging time at 760 ℃. The tensile ductility at room temperature of Ni-Cr-W-Fe alloy decreases after aging from 1000 to 3000 h, while the elevated temperature ductility varies mildly and keeps at approximately 15%.

Key wordsNi-Cr-W-Fe alloy    long-term aging    g' phase    tensile property
    
图1  1100 ℃固溶和760 ℃时效处理后Ni-Cr-W-Fe合金的显微组织
图2  760 ℃长期时效后Ni-Cr-W-Fe合金的SEM像
图3  760 ℃长期时效后Ni-Cr-W-Fe合金晶界碳化物TEM像
图4  经760 ℃长期时效后Ni-Cr-W-Fe 合金中g’相形貌与分布
图5  Ni-Cr-W-Fe 合金中g’相平均颗粒尺寸及长大倾向与时效时间的关系
Heat treatment Test temperature / ℃ Rp0.2 / MPa Rm / MPa A / % Z / %
1100 ℃, 30 min 25 319 732 64 77.0
1100 ℃, 30 min+ 25 754 1088 36 48.0
760 ℃, 16 h 704 700 920 10 17.0
750 645 810 12 14.5
表1  1100 ℃固溶和760 ℃时效处理后Ni-Cr-W-Fe合金拉伸性能
图6  1100 ℃固溶和760 ℃时效后Ni-Cr-W-Fe合金的拉伸断口形貌
图7  760 ℃长期时效时Ni-Cr-W-Fe合金的力学性能
图8  760 ℃长期时效后Ni-Cr-W-Fe合金的拉伸断口形貌
[1] Lin F S, Xie X S, Zhao S Q, Dong J X. J Chin Soc Power Eng, 2011; 31: 960 (林富生, 谢锡善, 赵双群, 董建新. 动力工程学报, 2011; 31: 960)
[2] Viswanathan R, Purgert R, Goodstine R S, Tanzosh J, Stanko G, Shingledecker J P, Vitalis B. In: Viswanathan R, Gandy D, Coleman K eds., Proc 5th Int Conf on Advances in Materials Technology for Fossil Power Plants, Marco Island, Florida: EPRI, 2007: 1
[3] Nakamura S, Kawashima H, Takei Y, Saito N, Tanaka Y, Nishimoto S. Mitsubishi Heavy Ind Tech Rev, 2011; 48(3): 8
[4] Viswanathan V, Purgert R, Rawls P. Adv Mater Proc, 2008; 8: 47
[5] Knezevic V, Schneider A, Landier C. Procedia Eng, 2013; 55: 240
[6] Van Stone R W. In: Strang A ed., Proc of Parsons 2000 Advanced Materials for 21st Century Turbines and Power Plant, London: IOM Communications Ltd., 2000: 91
[7] Guo J T, Du X K. Acta Metall Sin, 2005; 41: 1221 (郭建亭, 杜秀魁. 金属学报, 2005; 41: 1221)
[8] Allen D, Keustermans J P, Grijbels S, Bicego V. Mater High Temp, 2004; 21: 53
[9] Patel S J, de Barbadillo J J, Baker B A, Gollihue R D. Procedia Eng, 2013; 55: 246
[10] Lin F, Chen S, Xie X. In: Viswanathan R, Gandy D, Coleman K eds., Proc 5th Int Conf on Advances in Materials Technology for Fossil Power Plants, Marco Island, Florida: EPRI, 2007: 46
[11] Tokairin T, Dahl K V, Danielsen H K, Grumsen H B, Sato T, Hald J. Mater Sci Eng, 2013; A565: 285
[12] Wang T T, Wang C S, Guo J T, Zhou L Z. Mater Sci Forum, 2013; 747-748: 647
[13] Viswanathan R, Sarver J, Tanzosh J M. J Mater Eng Perform, 2006; 15: 256
[14] Wu Q, Hyojin S, Swinderman R W, Shingledecker J P, Vasudevan V K. Metall Mater Trans, 2008; 39A: 2569
[15] Zhao S Q, Xie X S, Smith G D, Patel S J. Mater Sci Eng, 2003; A355: 96
[16] Sims C T, Hagel W C. The Superalloys. New York: John Wiley & Sons, 1972: 55
[17] MacKay R A, Nathal M V. Acta Metall Mater, 1990; 38: 993
[18] Kim H T, Chun S S, Yao X X. J Mater Sci, 1997; 32: 4917
[19] Ardell A J. Acta Metall, 1968; 16: 511
[20] Lifscitz I M, Slyozov V V. J Phys Chem Solids, 1961; 19: 35
[21] Footer P K, Richards B P. J Mater Sci, 1982; 17: 2141
[22] Wagner C. Z Elektrochem, 1961; 65: 581
[23] Li X, Saunders N, Miodownik A P. Metall Mater Trans, 2002; 33A: 3367
[24] Patil R V, Kale G B. J Nucl Mater, 1996: 230: 57
[25] Baldan A. J Mater Sci, 2002; 37: 2379
[26] Kong Y H, Chen Q Z. Mater Sci Eng, 2004; A366: 135
[27] Huang Q Y,Li H K. Superalloy. Beijing: Metallurgical Industry Press, 2000: 29 (黄乾尧,李汉康. 高温合金. 北京: 冶金工业出版社, 2000: 29)
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[3] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[4] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[5] 刘先锋, 刘冬, 刘仁慈, 崔玉友, 杨锐. Ti-43.5Al-4Nb-1Mo-0.1B合金的包套热挤压组织与拉伸性能[J]. 金属学报, 2020, 56(7): 979-987.
[6] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[7] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[8] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[9] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[10] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[11] 黄太文,卢晶,许瑶,王栋,张健,张家晨,张军,刘林. ReTa对抗热腐蚀单晶高温合金900 ℃长期时效组织稳定性的影响[J]. 金属学报, 2019, 55(11): 1427-1436.
[12] 张宇, 王清, 董红刚, 董闯, 张洪宇, 孙晓峰. 基于团簇模型设计的镍基单晶高温合金(Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W)及其在900 ℃下1000 h的长期时效行为[J]. 金属学报, 2018, 54(4): 591-602.
[13] 陈胜虎, 戎利建. Ni-Fe-Cr合金固溶处理后的组织变化及其对性能的影响[J]. 金属学报, 2018, 54(3): 385-392.
[14] 李冬冬, 钱立和, 刘帅, 孟江英, 张福成. Mn含量对Fe-Mn-C孪生诱发塑性钢拉伸变形行为的影响[J]. 金属学报, 2018, 54(12): 1777-1784.
[15] 陈瑞, 许庆彦, 郭会廷, 夏志远, 吴勤芳, 柳百成. Al-7Si-Mg铝合金拉伸过程应变硬化行为及力学性能模拟研究[J]. 金属学报, 2017, 53(9): 1110-1124.