Please wait a minute...
金属学报  2015, Vol. 51 Issue (9): 1067-1076    DOI: 10.11900/0412.1961.2015.00133
  本期目录 | 过刊浏览 |
SO42-对NiCu低合金钢在除氧NaHCO3溶液中腐蚀行为的影响
卢云飞1,2,董俊华1(),柯伟1
2 武汉第二船舶设计研究所, 武汉 430064
EFFECTS OF SO42- ON THE CORROSION BEHAVIOR OF NiCu LOW ALLOY STEEL IN DEAERATED BICARBONATE SOLUTIONS
Yunfei LU1,2,Junhua DONG1(),Wei KE1
1 Environmental Corrosion Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2 Wuhan the Second Ship Design and Research Institute, Wuhan 430064
引用本文:

卢云飞,董俊华,柯伟. SO42-对NiCu低合金钢在除氧NaHCO3溶液中腐蚀行为的影响[J]. 金属学报, 2015, 51(9): 1067-1076.
Yunfei LU, Junhua DONG, Wei KE. EFFECTS OF SO42- ON THE CORROSION BEHAVIOR OF NiCu LOW ALLOY STEEL IN DEAERATED BICARBONATE SOLUTIONS[J]. Acta Metall Sin, 2015, 51(9): 1067-1076.

全文: PDF(3021 KB)   HTML
摘要: 

采用原位电化学监测技术研究了SO42-对NiCu低合金钢在除氧NaHCO3溶液浸泡过程中腐蚀行为的影响, 并利用XRD和SEM对浸泡后样品的锈层相结构和表面形貌进行了分析. 结果表明, 与纯NaHCO3溶液相比, SO42-的添加会在浸泡初期加速基体的腐蚀, 在后期抑制保护性腐蚀产物膜的生成, 促使腐蚀模式由未加入SO42-时的预钝化行为向活性溶解转变. 此外, SO42-与HCO3-浓度的升高均有助于Fe6(OH)12CO3的生成. 样品表面腐蚀产物最终由a-FeOOH, Fe3O4和Fe6(OH)12CO3构成, 表面形貌均以均匀腐蚀为主.

关键词 低合金钢锈层HCO3-SO42-    
Abstract

High level radioactive waste (HLW) is an extremely dangerous by-product of the global nuclear industry. Due to its intensely radioactive nature and ultra long half-life, HLW has to be safely managed and disposed for thousands of years, isolated from the biosphere. Deep geological repository (DGR) is considered to be the most feasible option worldwide because of its operability, stability, durability, environmental protection and so on. Basically, DGR relies on a multibarrier system and it consists of metallic canisters, backfill materials and a stable geologic formation. Since radionuclides could be moved into the biosphere by action of groundwater, both the geologic formation and backfill materials have to be of very low hydraulic permeability and metal canisters have to be corrosion resistant and prevent contact between the groundwater and the radioactive waste for as long as possible. Low carbon steel has been selected and studied as a candidate canister material in many countries because its long industrial experience, high-strength, low cost and it is less prone to localized corrosion than materials that passivity, but its larger corrosion rate may also set an insuperable barrier for the practical application. Recently, our studies revealed that NiCu low alloy steel is a more promising candidate for the canister material compared with the popular one, low carbon steel, since the former performs a more acceptable corrosion rate without increasing much cost and has better resistance to localized corrosion in environments with high concentration of Cl-. In this work, effects of SO42-, another ubiquitous species in deep groundwater, on the corrosion behavior of NiCu low alloy steel during immersion in simulated deep groundwater environments were investigated by in situ electrochemical measurements and surface analysis techniques. Results show that the addition of SO42- can promote the substrate dissolution during the initial stage of immersion. In the later stage, SO42- weakens the protectiveness of formed films and consequently, active dissolution prevails on the electrode surface rather than the prepassivation. Concentrated SO42- and HCO3- can both promote the formation of Fe6(OH)12CO3. The main components of corrosion products are a-FeOOH, Fe3O4 and Fe6(OH)12CO3, and uniform corrosion is observed.

Key wordslow alloy steel    rust    HCO3-    SO42-
    
基金资助:* 国家自然科学基金资助项目51471175
图1  NiCu低合金钢在添加不同浓度SO42-的除氧0.05和0.10 mol/L NaHCO3溶液中及未添加SO42-溶液中[15,16]的极化曲线
图2  NiCu低合金钢在添加了0.10 mol/L SO42-的除氧0.05和0.10 mol/L NaHCO3溶液中及未添加SO42-溶液中[15,16]的开路电位随浸泡时间的变化曲线
图3  NiCu低合金钢在添加了0.10 mol/L SO42-的除氧0.05 mol/L NaHCO3溶液中浸泡第一和第三阶段的电化学阻抗谱(EIS)
图4  NiCu低合金钢在添加了0.10 mol/L SO42-的除氧0.10 mol/L NaHCO3溶液中浸泡第一和第三阶段的EIS
图5  等效电路示意图
Time Y0,HF nHF Re Y0,dl ndl Rct Y0,W
d Ssncm-2 Wcm2 Ssncm-2 Wcm2 Ss0.5cm-2
1 - - 18.24 0.0002459 0.8338 5188 0.006392
5 1.728×10-7 1 17.84 0.0010690 0.9170 4126 -
9 3.684×10-6 0.7569 18.38 0.0032880 0.8994 3830 0.012470
15 2.367×10-5 0.6325 18.28 0.0065300 0.9053 3072 0.003444
21 4.490×10-5 0.5914 17.97 0.0097040 0.9041 2590 0.003690
27 1.906×10-5 0.6445 17.49 0.0138600 0.8896 3648 0.010770
32 3.000×10-5 0.6158 17.92 0.0174700 0.8708 4204 -
44 3.243×10-5 0.6009 21.60 0.0060670 0.8241 1339 0.006091
50 2.503×10-5 0.6203 22.26 0.0064910 0.8261 1486 0.007765
表1  NiCu低合金钢在0.05 mol/L NaHCO3+0.10 mol/L Na2SO4溶液中的EIS拟合结果
图6  NiCu低合金钢在添加了0.10 mol/L SO42-的除氧0.05和0.10 mol/L NaHCO3溶液中及未添加SO42-溶液中[15,16]的Rct拟合结果随浸泡时间的演化曲线
Time Re Y0,cp ncp Rcp Y0,dl ndl Rct Y0,W
d Wcm2 Ssncm-2 Wcm2 Ssncm-2 Wcm2 Ss0.5cm-2
1 14.58 - - - 0.0002781 0.8658 2538 0.012750
4 15.66 - - - 0.0011160 0.9163 4236 0.003927
8 14.58 - - - 0.0027680 0.8409 3408 -
14 15.32 0.02028 0.6764 27.89 0.0059360 0.9072 4110 -
20 14.72 0.01620 0.6958 41.75 0.0083580 0.8713 3752 -
26 15.05 0.02627 0.9692 55.75 0.0071720 0.8090 3780 -
31 14.89 0.02941 0.9916 65.46 0.0099230 0.8147 4038 -
37 17.34 0.03457 1 107.80 0.0114000 0.8218 5219 -
43 16.42 0.03906 1 104.70 0.0121500 0.8159 4094 -
表2  NiCu低合金钢在0.10 mol/L NaHCO3+0.10 mol/L Na2SO4溶液中的EIS拟合结果
图7  NiCu低合金钢在实验溶液中浸泡结束后产物的XRD谱
图8  NiCu低合金钢在0.05 mol/L NaHCO3+0.10 mol/L Na2SO4和0.10 mol/L NaHCO3+0.10 mol/L Na2SO4溶液中长期浸泡实验后去除表面锈层的表面腐蚀形貌
[1] Taniguchi N, Suzuki H, Kawasaki M, Naito M, Kobayashi M, Takahashi R, Asano H. Corros Eng Sci Technol, 2011; 46: 117
[2] Kursten B, Druyts F, Macdonald D D, Smart N R, Gens R, Wang L, Weetjens E, Govaerts J, Corros Eng Sci Technol, 2011; 46: 91
[3] Macdonald D D, Urquidi-Macdonald M, Engelhardt G R, Azizi O, Saleh A, Almazooqi A, Rosas-Camacho O. Corros Eng Sci Technol, 2011; 46: 98
[4] Féron D, Crusset D, Gras J M. J Nucl Mater, 2008; 379: 16
[5] Bennett D G, Gens R. J Nucl Mater, 2008; 379 : 1
[6] King F, Padovani C. Corros Eng Sci Technol, 2011; 46: 82
[7] King F. Corrosion, 2013; 69: 986
[8] Guo Y H, Wang J, Lv C H, Liu S F, Zhong Z H. Earth Sci Front, 2005; 12( Suppl): 117 (郭永海, 王 驹, 吕川河, 刘淑芬, 钟自华. 地学前缘, 2005; 12(特刊): 117)
[9] Cao G L, Li G M, Chen S, Chang W S, Chen X Q. Acta Metall Sin, 2011; 47: 145 (曹国良, 李国明, 陈 珊, 常万顺, 陈学群. 金属学报, 2011; 47: 145)
[10] Matsushima I,Translated by Jing Y K. Low-Alloy Corrosion Resistant Steels: A History of Development, Application and Research. Beijing: Metallurgic Industry Press, 2004: 100 (松岛 岩著,靳裕康译. 低合金耐蚀钢——开发、发展及研究. 北京: 冶金工业出版社, 2004: 100)
[11] Kihira H, Kimura M. Corrosion, 2011; 67: 1
[12] Yang J F, Dong J H, Ke W. Acta Metall Sin, 2011; 47: 1321 (阳靖峰, 董俊华, 柯 伟. 金属学报, 2011; 47: 1321)
[13] Wen H L, Dong J H, Ke W, Chen W J, Yang J F, Chen N. Acta Metall Sin, 2014; 50: 275 (文怀梁, 董俊华, 柯 伟, 陈文娟, 阳靖峰, 陈 楠. 金属学报, 2014; 50: 275)
[14] Lu Y F, Yang J F, Dong J H, Ke W. Acta Metall Sin, 2015; 51: 440 (卢云飞, 阳靖峰, 董俊华, 柯 伟. 金属学报, 2015; 51: 440)
[15] Lu Y F, Dong J H, Ke W. J Mater Sci Technol, accepted.
[16] Lu Y F, Dong J H, Ke W. J Mater Sci Technol, doi:
[17] Dong J H, Nishimura T, Kodama T. MRS Symp Process, 2002; 713: 105
[18] Bockris J O M, Drazic D, Despic A R. Electrochim Acta, 1961; 4: 325
[19] Davies D H, Burstein G T. Corrosion, 1980; 36: 416
[20] Burstein G T, Davies D H. Corros Sci, 1980; 20: 1143
[21] Cao C N,Zhang J Q. Introduction of Electrochemical Impedance Spectroscopy. Beijing: Science Press, 2002: 135 (曹楚南,张鉴清. 电化学阻抗谱导论. 北京: 科学出版社, 2002: 135)
[22] Sherar B W A, Keech P G, Qin Z, King F, Shoesmith D W. Corrosion, 2010; 66: 045001-1
[23] Genin J M R, Bourrie G, Trolard F, Abdelmoula M, Jaffrezic A, Refait P, Maitre V, Humbert B, Herbillon A. Environ Sci Technol, 1988; 32: 1058
[24] Larroumet D, Greenfield D, Akid R, Yarwood J. J?Raman?Spectrosc, 2008; 39: 1740
[25] Drissi S H, Refait P, Abdelmoula M, Genin J M R. Corros Sci, 1995; 37: 2025
[1] 刘雨薇, 顾天真, 王振尧, 汪川, 曹公望. Q235Q450NQR1在中国南沙海洋大气环境中暴晒34个月后的腐蚀行为[J]. 金属学报, 2022, 58(12): 1623-1632.
[2] 马宏驰, 杜翠薇, 刘智勇, 李永, 李晓刚. E690高强低合金钢焊接热影响区典型组织在含SO2海洋环境中的应力腐蚀行为对比研究[J]. 金属学报, 2019, 55(4): 469-479.
[3] 邹佳男, 庞晓露, 高克玮. 低合金钢X70和3Cr在超临界CO2环境中的缝隙腐蚀[J]. 金属学报, 2018, 54(4): 537-546.
[4] 余军, 张德平, 潘若生, 董泽华. 井下含硫环空液中P110油管钢应力腐蚀开裂的电化学噪声特征[J]. 金属学报, 2018, 54(10): 1399-1407.
[5] 刘峰, 王慷. 低合金钢TMCP中相变热力学/动力学相关性探讨*[J]. 金属学报, 2016, 52(10): 1326-1332.
[6] 卢云飞, 阳靖峰, 董俊华, 柯伟. NiCu低合金钢在含Cl-的除氧NaHCO3溶液中的腐蚀行为研究[J]. 金属学报, 2015, 51(4): 440-448.
[7] 吴欣强, 谭季波, 徐松, 韩恩厚, 柯伟. 核级低合金钢高温水腐蚀疲劳机制及环境疲劳设计模型[J]. 金属学报, 2015, 51(3): 298-306.
[8] 陈文娟, 郝龙, 董俊华, 柯伟, 文怀梁. 模拟工业-海岸大气中pH值对Q235B钢腐蚀行为的影响*[J]. 金属学报, 2015, 51(2): 191-200.
[9] 徐平光,殷匠,张书彦. 充氢超高强度钢拉伸变形的原位中子衍射研究*[J]. 金属学报, 2015, 51(11): 1297-1305.
[10] 陈文娟, 郝龙, 董俊华, 柯伟, 文怀梁. 模拟工业-海岸大气中SO2对Q235B钢腐蚀行为的影响*[J]. 金属学报, 2014, 50(7): 802-810.
[11] 徐秋发, 庞晓露, 刘泉林, 高克玮. 低合金钢和碳钢在90 ℃地下水模拟溶液中的缝隙腐蚀*[J]. 金属学报, 2014, 50(6): 659-666.
[12] 房玉佩, 谢振家, 尚成嘉. 感应回火对1000 MPa级高强度低合金钢碳化物析出行为及韧性的影响[J]. 金属学报, 2014, 50(12): 1413-1420.
[13] 刘文庆,刘庆冬,顾剑锋. 原子探针层析技术(APT)最新进展及应用[J]. 金属学报, 2013, 49(9): 1025-1031.
[14] 王长罡,董俊华,柯伟,李晓芳. HCO3-, SO42-和Cl-混合体系中Cu点蚀行为的研究[J]. 金属学报, 2013, 49(2): 207-213.
[15] 王长罡 董俊华 柯伟 陈楠 李晓芳. HCO3-和Cl-混合体系中Cu的点蚀行为研究[J]. 金属学报, 2012, 48(11): 1365-1373.