Please wait a minute...
金属学报  2015, Vol. 51 Issue (7): 853-858    DOI: 10.11900/0412.1961.2015.00007
  本期目录 | 过刊浏览 |
C对一种镍基高温合金与陶瓷型壳界面反应及润湿性的影响*
陈晓燕1,金喆2,白雪峰2,周亦胄1(),金涛1,孙晓峰1
2 沈阳黎明航空发动机(集团)有限责任公司, 沈阳 110043
EFFECT OF C ON THE INTERFACIAL REACTION AND WETTABILITY BETWEEN A Ni-BASED SUPERALLOY AND CERAMIC MOULD
Xiaoyan CHEN1,Zhe JIN2,Xuefeng BAI2,Yizhou ZHOU1(),Tao JIN1,Xiaofeng SUN1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2 Shenyang Liming Aero-Engine Group Corporation, Shenyang 110043
全文: PDF(3918 KB)   HTML
摘要: 

采用座滴法研究了C对一种高温合金与陶瓷型壳的界面反应及润湿性的影响. 通过SEM和EPMA研究了合金与陶瓷型壳的界面组织形貌及反应区元素分布. 利用Thermo-Calc软件计算了合金熔体中C, Cr和Al的活度, 分析了C含量对合金熔体中C, Cr和Al的活度的影响. 探讨了合金/陶瓷界面反应与润湿性的关系. 结果表明, 合金中C含量高于0.1%时, C的活度明显增大, 合金熔体与陶瓷型壳发生界面反应, 合金熔体/陶瓷体系由非反应润湿变为反应润湿, 合金表面产生黏砂层且合金中Cr和Al扩散到陶瓷表面.

关键词 高温合金陶瓷型壳界面反应润湿性活度C    
Abstract

Superalloy components are always produced by the way of investment casing. During investment casting, interfacial reactions may take place and bring about metal contamination and defect formation on the surface of the components. The influence of C content on the interfacial reaction and wettability between a Ni-based superalloy and ceramic mould was investigated by using a sessile drop method. The interfacial morphology and elements distribution were studied by SEM and EPMA. Activities of C, Cr and Al were calculated by using Thermo-Calc software. The relationship between interfacial reaction and wettability was discussed. It was found that when C content was higher than 0.1%, activity of C increased greatly and interfacial reaction took place. The wettability varied from non-reactive wetting to reactive wetting. In the reactive wetting systems, sand adhesions appeared and Al and Cr diffused to the ceramic surface.

Key wordssuperalloy    ceramic mould    interfacial reaction    wettability    activity    C
    
基金资助:* 国家自然科学基金项目51271186, 51331005和11332010, 以及国家高技术研究发展计划项目2014AA041701资助

引用本文:

陈晓燕,金喆,白雪峰,周亦胄,金涛,孙晓峰. C对一种镍基高温合金与陶瓷型壳界面反应及润湿性的影响*[J]. 金属学报, 2015, 51(7): 853-858.
Xiaoyan CHEN, Zhe JIN, Xuefeng BAI, Yizhou ZHOU, Tao JIN, Xiaofeng SUN. EFFECT OF C ON THE INTERFACIAL REACTION AND WETTABILITY BETWEEN A Ni-BASED SUPERALLOY AND CERAMIC MOULD. Acta Metall Sin, 2015, 51(7): 853-858.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2015.00007      或      https://www.ams.org.cn/CN/Y2015/V51/I7/853

图1  高温润湿性测试炉结构示意图
图2  合金熔体/陶瓷体系润湿角随时间的变化
图3  润湿实验后合金及陶瓷表面宏观形貌
图4  合金(0.2%C)/陶瓷接触区附近陶瓷表面形貌及元素面分布
图5  非反应润湿(0.05%C)与反应润湿(0.2%C)合金/陶瓷界面组织形貌以及反应润湿体系合金/陶瓷界面处元素面分布
Alloy aC / 10-4 aAl / 10-7 aCr / 10-4
A1 2.01 3.52 1.50
A2 2.51 3.52 1.50
A3 12.77 3.57 1.47
A4 26.05 3.63 1.45
A5 53.54 3.79 1.38
A6 81.78 3.86 1.35
表1  1550 ℃时A1~A6合金熔体中C, Al和Cr的活度
[1] Sun X F, Jin T, Zhou Y Z, Hu Z Q. Mater China, 2012; 31: 1 (孙晓峰, 金 涛, 周亦胄, 胡壮麒. 中国材料进展, 2012; 31: 1)
[2] Chen R Z, Wang L B, Li J H. J Aero Mater, 2000; 20(1): 55 (陈荣章, 王罗宝, 李建华. 航空材料学报, 2000; 20(1): 55)
[3] Konter M, Thumann M. J Mater Process Technol, 2001; 117: 386
[4] Volek A, Pyczak F, Singer R F, Mughrabi H. Scr Mater, 2005; 52: 141
[5] Yeh A C, Tin S. Scr Mater, 2005; 52: 519
[6] Li J R, Tang D Z, Li R L, Li S Z, Wang Z T. J Mater Sci Technol, 1999; 15: 53
[7] Reed R C, Tao T, Warnken N. Acta Mater, 2009; 57: 5898
[8] Maktouf W, Sai K. Eng Fail Anal, 2015; 47: 89
[9] Ford T. Aircraft Eng Aero Technol, 1997; 69: 564
[10] Kruglov E P, Kochetova G K. Russ Aero, 2007; 50: 227
[11] Wang Z J, Zhang L T. Acta Aerodyn Sin, 1989; 10: 167 (王祖锦, 张立同. 航空学报, 1989; 10: 167)
[12] Jin Z X. Foundry, 2000; 49: 172 (金仲信. 铸造, 2000; 49: 172)
[13] Hu G Q, Wang P, Pen F, Xiao N M. Foundry Technol, 2011; 32: 610 (扈广麒, 王 培, 彭 凡, 肖纳敏. 铸造技术, 2011; 32: 610)
[14] Kumar G, Prabhu K N. Adv Colloid Interface Sci, 2007; 133: 61
[15] Nakashima K, Matsumoto H, Mori K. Acta Mater, 2000; 48: 4677
[16] Cutler E R, Wasson A J, Fuchs G E. Scr Mater, 2008; 58: 146
[17] Xu Y L, Jin Q M, Xiao X S, Cao X L, Jia G Q, Zhu Y M, Yin H J. Mater Sci Eng, 2011; A528: 4600
[18] Jiang D L,Li L S,Ouyang S X,Shi J L. Material Handbook of Inorganic Metal. Beijing: Chemical Industry Press, 2009: 38 (江东亮,李龙士,欧阳世翕,施剑林. 无机非金属材料手册. 北京: 化学工业出版社, 2009: 38)
[19] Orlov M R. Russ Metall, 2008; 1: 70
[20] Liu X F, Guo W J, Lou Y C, Su G Q, Yu B. Foundry, 2010; 59: 1293 (刘孝福, 郭伟杰, 娄延春, 苏贵桥, 于 波. 铸造, 2010; 59: 1293)
[21] Wei Z J. Formation Process of Liquid Metals. Beijing: Higher Education Press, 2010: 252 (魏尊杰. 金属液态成型工艺. 北京: 高等教育出版社, 2010: 252)
[22] Liang Y J. Thermochemical Data of Inorganics. Shenyang: Northeastern University Press, 1993: 513 (梁英教. 无机热力学数据手册. 沈阳: 东北大学出版社, 1993: 513)
[23] Ma G F, He C L. Acta Metall Sin, 2013; 49: 495 (马国峰, 贺春林. 金属学报, 2013; 49: 495)
[24] Дemhиc И M, Кapпobич Ю Ф, Гjie3ep Г M. J Aero Mater, 1991; 11: 62 (Дemhиc И M, Кapпobич Ю Ф, Гjie3ep Г M. 航空材料学报, 1991; 11: 62)
[1] 刘金来, 叶荔华, 周亦胄, 李金国, 孙晓峰. 一种单晶高温合金的弹性性能的各向异性[J]. 金属学报, 2020, 56(6): 855-862.
[2] 魏洁, 魏英华, 李京, 赵洪涛, 吕晨曦, 董俊华, 柯伟, 何小燕. 带损伤环氧涂层钢筋在Cl-和碳化耦合作用下的腐蚀行为[J]. 金属学报, 2020, 56(6): 885-897.
[3] 李根, 兰鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714.
[4] 刘震鹏, 闫志巧, 陈峰, 王顺成, 龙莹, 吴益雄. 金刚石工具用Cu-10Sn-xNi合金的制备和性能表征[J]. 金属学报, 2020, 56(5): 760-768.
[5] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[6] 曹铁山, 赵津艺, 程从前, 孟宪明, 赵杰. 冷变形和固溶温度对HR3C钢中σ相析出行为的影响[J]. 金属学报, 2020, 56(5): 673-682.
[7] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[8] 孙新军,刘罗锦,梁小凯,许帅,雍岐龙. 高钛耐磨钢中TiC析出行为及其对耐磨粒磨损性能的影响[J]. 金属学报, 2020, 56(4): 661-672.
[9] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[10] 马德新,王富,徐维台,徐文梁,赵运兴. 高温合金单晶铸件中条纹晶的形成机制[J]. 金属学报, 2020, 56(3): 301-310.
[11] 赵旭,孙元,侯星宇,张洪宇,周亦胄,丁雨田. 取向偏差对镍基单晶高温合金钎焊接头组织与力学性能的影响[J]. 金属学报, 2020, 56(2): 171-181.
[12] 刘兴军, 陈悦超, 卢勇, 韩佳甲, 许伟伟, 郭毅慧, 于金鑫, 魏振帮, 王翠萍. 新型钴基高温合金多尺度设计的研究现状与展望[J]. 金属学报, 2020, 56(1): 1-20.
[13] 吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
[14] 杨柯,梁烨,严伟,单以银. (9~12)%Cr马氏体耐热钢中微量B元素的择优分布行为及其对微观组织与力学性能的影响[J]. 金属学报, 2020, 56(1): 53-65.
[15] 杜金辉,吕旭东,董建新,孙文儒,毕中南,赵光普,邓群,崔传勇,马惠萍,张北江. 国内变形高温合金研制进展[J]. 金属学报, 2019, 55(9): 1115-1132.