Please wait a minute...
金属学报  2009, Vol. 45 Issue (10): 1166-1170    
  论文 本期目录 | 过刊浏览 |
Ti对Zn-Al合金薄膜耐腐蚀性能的影响
张静玉1;2; 刘庆峰1; 刘茜1
1 中国科学院上海硅酸盐研究所高性能陶瓷和超微结构国家重点实验室; 上海 200050
2 中国科学院研究生院; 北京 100049
EFFECT OF Ti ON THE ANTI-CORROSION PROPERTY OF Zn-Al ALLOY FILMS
ZHANG Jingyu1; 2; LIU Qingfeng1; LIU Qian1
1 State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050
2) Graduate School; Chinese Academy of Sciences; Beijing 100049
引用本文:

张静玉 刘庆峰 刘茜. Ti对Zn-Al合金薄膜耐腐蚀性能的影响[J]. 金属学报, 2009, 45(10): 1166-1170.
. EFFECT OF Ti ON THE ANTI-CORROSION PROPERTY OF Zn-Al ALLOY FILMS[J]. Acta Metall Sin, 2009, 45(10): 1166-1170.

全文: PDF(1643 KB)  
摘要: 

应用组合材料芯片技术, 以离子束溅射法在低碳钢基片上制备了不同Ti掺杂量的Zn-Al-Ti薄膜 (Al和Zn质量分数分别为55%和45%)样品阵列. 沉积得到的
多层薄膜经低温扩散和高温晶化形成合金薄膜. 以电化学方法测定合金薄膜在浓度(质量分数)为3.5%的中性NaCl水溶液中的耐蚀性能, 并进一步研究了优选出的组分的耐蚀性. 结果表明, Ti的适量掺杂可使合金薄膜的耐蚀性能明显提高. 其中, Ti的质量分数在6%左右时耐蚀性能最佳. 采用XRD及SEM对6%Ti的合金薄膜的相结构和表面形貌进行了表征, 并与未掺杂Ti的薄膜进行了比较. 此外, 分析了Zn-Al-6%Ti合金薄膜的腐蚀机理, 为进一步优化薄膜体系提供了依据.

关键词 Ti 掺杂 Zn-Al合金薄膜 耐腐蚀 组合材料芯片技术    
Abstract

Zinc coatings have been widely used to provide corrosion protection for metal materials because they act as barriers and sacrificial anodes to prevent their protected substrates from becoming rust. However, it is seldom satisfactory for zinc coatings to meet the more demanding anti–corrosion needs in severer atmosphere. The increased requirements for enhancing anti–corrosion properties have led to the industrial production of zinc alloy coatings. A range of Zn–Al coatings were thus developed as replacements for zinc coatings. Further researches on Zn–Al coatings indicated that the anti–corrosion properties of the binary system can be improved by doping other elements. Besides, metal titanium could exhibit outstanding anti–corrosion properties under a wide variety of environments. Therefore, Zn–Al–Ti thin films or coatings are strongly supposed to be the promising materials for improving anti–corrosion properties. Using the combinatorial material chip technology, Zn–Al–Ti thin films with different Ti contents (where the mass fraction of Al to Zn are 55% and 45%, respectively) were synthesized on the low–carbon substrate by an ion beam sputtering method. The as–deposited multilayer films were trnsformed into alloy films after a two–step annealing: diffusion at lower temperature and crystallization at higher temperature. The anti–corrosion behavior of the alloy films in 3.5% (mass fraction) neutral NaCl aqueous solution was determined by the electrochemical methods. Further experiments were conducted to investigate the corrosion properties of the optimized composition. The results indicate that the doping of Ti obviously improves the anti–corrosion properties of the Zn–Al films, where the optimal content of Ti doping is around 6% (mass fraction). The structure and morphology of the optimal alloy film were characterized using XRD and SEM, respectively. Besides, the anti–corrosion mechnism of the ternary Zn–Al–Ti alloy films was analyzed, which provides some useful results for the further research on the alloy film systems.

Key wordsTi dopingZn–Al alloy film    anti–corrosion    combinatorialmaterial chip technology
收稿日期: 2009-04-14     
ZTFLH: 

O646

 
基金资助:

上海市科学技术委员会科技攻关项目055211005及上海硅酸盐研究所创新项目SCX200707资助

作者简介: 张静玉, 女, 1984年生, 硕士生

[1] Danielson E. Nature, 1997; 389: 944
[2] Wang J S. Science, 1998; 279: 1712
[3] Xiang X D. Annu Rev Mater Sci, 1999; 29: 149
[4] Koinuma H, Aiyer H N, Matsumoto Y. Sci Technol Adv Mater, 2000; 1: 1
[5] Cooper J S, Zhang G H, McGinn P J. Rev Sci Instrum, 2005; 76: 1
[6] Zhu H, Zhu S J, Liu Q, Liu Q F, Wang L. Mater Mech Eng, 2008; 32(1): 1
(朱丽慧, 朱硕金, 刘茜, 刘庆峰, 王 利. 机械工程材料, 2008; 32(1): 1)
[7] Yoo Y K, Ohnishi T, Wang G, Duewer F, Xiang X D, Chu Y S, Mancini D C, Handley R C. Intermetallics, 2001; 9:541
[8] Tao Q, Li F F, Xing J M. Hunan Nonferrous Met, 2007; 23(2): 43
(陶琦, 李芬芳, 邢健敏. 湖南有色金属, 2007; 23(2): 43)
[9] Huang J Z. Automob Technol Mater, 2006; (8): 1
(黄建中. 汽车工艺与材料, 2006; (8): 1)
[10] Moreira A R, Panossian Z, Camargo P L. Corros Sci, 2006;48: 564
[11] Palma E, Puente J M, Morcillo M. Corros Sci, 1998; 40:61
[12] Sere P R, Zapponi M, Elsner C I. Corros Sci, 1998; 40:1711
[13] Pistofidis N, Vourlias G, Pavlidou E J. Optoelectron Adv Mater, 2007; 6: 1653
[14] Wu Z F, He Y H, Tang L M, Huang B Y, Xu N P. Mater Sci Eng Powder Metall, 2007; 12: 310
(武治锋, 贺跃辉, 汤烈明, 黄伯云, 徐南平. 粉末冶金材料科学与工程, 2007; 12: 310)
[15] Yang L H, Zhang JFu J QCui J. Iron Steel, 2007; 42(4): 1
(杨立红, 张健, 傅建钦, 崔健. 钢铁, 2007; 42(4): 1)
[16] Ratzek U. Stahl Eisen, 2004, 124: 20
[17] Quantin D, Thirion J L, Aernout J J. Rev M´etall, 2005; 102: 315
[18] Hakkarainen T. ASTM STP 8661983: 91
[19] Fei J Y. Master Degree Dissertation, Northwestem Polytechnieal University, Xi’an, 2007
(费敬银. 西北工业大学硕士学位论文, 西安, 2007)
[20] Lodhi Z F, Mol J M C, Hovestad A, ’t Hoen–Velterop L,Terryn H, de Wit J H W. Surf Coat Technol, 2009; 203:1415
[21] Cao C N. Principles of Electrochemistry of Corrosion. Beijing: Chemical Industry Press, 2004: 120
(曹楚南. 腐蚀电化学原理. 北京: 化学工业出版社, 2004: 120)
[22] Parisot R, Forest S, Pineau A. Metall Mater Trans, 2004;35A: 813
[23] Yu Y J, Kim J G. Mater Sci Eng, 2002; A332: 140

[1] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[2] 朱雯婷, 崔君军, 陈振业, 冯阳, 赵阳, 陈礼清. 690 MPa级高强韧低碳微合金建筑结构钢设计及性能[J]. 金属学报, 2021, 57(3): 340-352.
[3] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[4] 赵婷婷, 康志新, 马夏雨. 一步电沉积法制备超疏水Cu网及其耐腐蚀和油水分离性能[J]. 金属学报, 2018, 54(1): 109-117.
[5] 王垚,李春福,林元华. Cr对Fe-Cr合金耐蚀性能影响的电子理论研究[J]. 金属学报, 2017, 53(5): 622-630.
[6] 夏超, 钱仕, 王东辉, 刘宣勇. 碳离子注入医用Ti性能研究[J]. 金属学报, 2017, 53(10): 1393-1401.
[7] 徐伟,路新,杜艳霞,孟庆宇,黎鸣,曲选辉. 粉末冶金制备Ti-Fe二元合金的耐腐蚀性能[J]. 金属学报, 2017, 53(1): 38-46.
[8] 张骏,姚美意,冯炫凯,王志刚,黄娇,戴训,张金龙,周邦新. Zr-Sn-Fe-Cr-(Nb)合金在500 ℃过热蒸汽中的腐蚀各向异性研究*[J]. 金属学报, 2016, 52(12): 1565-1571.
[9] 苟少秋,周邦新,谢世敬,徐龙,姚美意,李强. Zr-4合金在LiOH水溶液中腐蚀时氧化膜生长各向异性的研究*[J]. 金属学报, 2015, 51(8): 993-1000.
[10] 王波阳,周邦新,王桢,黄娇,姚美意,周军. Zr-0.72Sn-0.32Fe-0.14Cr-xNb合金在500 ℃过热蒸汽中的耐腐蚀性能*[J]. 金属学报, 2015, 51(12): 1545-1552.
[11] 赵霞, 刘扬, 查向东, 程乐明, 马颖澈, 刘奎. 一种新型镍基耐蚀合金焊接接头的组织与力学性能[J]. 金属学报, 2014, 50(11): 1377-1383.
[12] 潘晓铭,吴俊升,肖葵,高书君,裴礼鸿,田然,李晓刚. 铝合金表面缓蚀自修复疏水性膜层的制备与表征[J]. 金属学报, 2013, 49(9): 1113-1120.
[13] 韦天国,龙冲生,苗志,刘云明,栾佰峰. Zr-0.4Fe-1.0Cr-x Mo合金在500℃和10.3 MPa水蒸汽中的腐蚀行为[J]. 金属学报, 2013, 49(6): 717-724.
[14] 康志新,郭明杰. 热氧化法制备超疏水Ti表面及其耐腐蚀性[J]. 金属学报, 2013, 49(5): 629-634.
[15] 张金龙,谢兴飞,姚美意,周邦新,彭剑超,梁雪. Zr-1Nb-0.7Sn-0.03Fe-xGe合金在360 ℃ LiOH水溶液中耐腐蚀性能的研究[J]. 金属学报, 2013, 29(4): 443-450.