Please wait a minute...
金属学报  2009, Vol. 45 Issue (6): 711-716    
  论文 本期目录 | 过刊浏览 |
单晶镍基高温合金DD8激光快速熔凝组织
金 涛; 孙晓峰; 赵乃仁; 刘金来; 张静华; 胡壮麒
(中国科学院金属研究所高温合金部; 沈阳 110016)
LASER GLAZING RAPIDLY SOLIDIFIED MICROSTRUCTURE OF DD8 SINGLE CRYSTAL Ni--BASED SUPERALLOY
JIN Tao; SUN Xiaofeng; ZHAO Nairen; LIU Jinlai; ZHANG Jinghua; HU Zhuangqi
Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
引用本文:

金涛 孙晓峰 赵乃仁 刘金来 张静华 胡壮麒 . 单晶镍基高温合金DD8激光快速熔凝组织[J]. 金属学报, 2009, 45(6): 711-716.
, , , , . LASER GLAZING RAPIDLY SOLIDIFIED MICROSTRUCTURE OF DD8 SINGLE CRYSTAL Ni--BASED SUPERALLOY[J]. Acta Metall Sin, 2009, 45(6): 711-716.

全文: PDF(9544 KB)  
摘要: 

DD8单晶镍基高温合金经激光扫描快速熔凝后, 熔池表面宽度随扫描速率增加变窄; 一次枝晶间距随冷却速率增加而减小. 分析表明: 熔凝后元素的枝晶偏析不明显, 合金成分趋于均匀. 熔凝后的凝固形态由熔池底部到表面依次为准平面凝固、胞状凝固、胞枝状凝固和细密枝晶凝固. 准平面和胞状凝固区由γ固溶体及弥散γ'相 (20 nm) 组成. 在胞枝晶和枝晶凝固区, 枝晶间出现一种高Ti含量条状相. 在过渡区, γ固溶体及γ'相皆部分熔凝, 未全溶的γ'相成为熔凝再析出弥散γ'相的核心, 过渡区γ'相呈堆状分布.

关键词 镍基高温合金 单晶 激光辐照 快速凝固 微观组织    
Abstract

The laser glazing rapid solidification can make the dendrite refined and reduce the segregation of alloying elements, so it is very favorable to
mechanical properties of alloys, e.g., the fatigue life of Ni--based superalloy can be prolonged by laser surface melting process due to improved
resistance to stress corrosion cleavage. The laser surface melting process can be used for modification of surface or repair of casting defects (such
as surface porosity, surface stray grains) in single crystal components. Recently, this technique has become an attractive research subject with latent application. A successful laser glazing rapid solidification to single--crystal should ensure the preservation of the single--crystal nature, i.e., the
re--solidified surface layer needs to be epitactic with the substrate. The microstructure after laser re--solidification is closely related to the processing parameters, however, the relationship between microstructure and re--solidification conditions or processing parameters is not well understood
and needs further study. In the present work, the microstructure of laser glazing solidified Ni--based single crystal DD8 was investigated by OM, SEM as well as TEM. The results show that the surface width of the melted pool becomes narrow with an increase of scanning rate, so the melted pool has a relatively high interface/volume ratio which leads to a higher cooling rate. The primary dendrite arm spacing decreases with an increase of cooling rate, and gradually reaches a minimum about only 3 μm, which is two orders of magnitude smaller than that of the untreated part of alloy. EDXA shows that the dendritic segregation is not obvious and the chemical compositions tend to be homogeneous after re--solidification, which is caused by the higher solidification rate and related partition coefficients of alloying elements. The solidified structures are composed of the quasi--plane front, cellular and fine dendrites from substrate to surface of melted pool. The structures in the regions of the quasi--plane front and cellular consist of γ--solid solution and dispersive γ' precipitates with about 20 nm in size. In the regions of the cellular--dendrite and the dendrite, however, there is a eutectic structure with a higher Ti content in the interdendrites. These eutectic structures are small in size and look like leaves. In the transition region, both γ and γ'--phases are not completely melted, and there are some dislocations distributed on the interfaces of the γ'--phase particles induced by thermal stress between γ and γ' phases at higher cooling rate. The unmelted γ' particles can act as nuclei of  the second precipitated γ' phases which have a size of about 10 nm and a pile--up--like morphology.

Key wordsNi--based superalloy    single crystal    laser glazing    rapid solidification    microstructure
收稿日期: 2008-10-09     
ZTFLH: 

TG132.3

 
作者简介: 金涛, 男, 1964年生, 研究员, 硕士

1] Marchi C S, Zaleski T, Lee S, Yang N Y C, Stuart B. Scr Mater, 2008; 58: 782
[2] Liu W P, DuPont J N. Acta Mater, 2004; 52: 4833
[3] Liu W P, DuPont J N. Acta Mater, 2005; 53: 1545
[4] Gaumann M, Bezencon C, Canalis P. Acta Mater, 2001;49: 1051
[5] Zhang Y W, Zhang S Q, Wang H M. Rare Met Mater Eng, 2008; 37: 169
(张亚伟, 张述泉, 王华明. 稀有金属材料与工程, 2008; 37: 169)
[6] Wang H M, Tang Y J, Zhang J H. J Aero Mater, 1991;11(1): 12
(王华明, 唐亚俊, 张静华. 航空材料学报, 1991; 11(1): 12)
[7] Wang H M, Zhang J H. Acta Metall Sin, 1991; 27: A403
(王华明, 张静华, 金属学报. 1991; 27: A403)
[8] Zhang J H, Zhang Y S, Zhang Z Y, Xu Y B, Tang Y J, Hu Z Q. Acta Metall Sin, 1983; 19: A309
(张静华, 张玉生, 张志亚, 徐永波, 唐亚俊, 胡壮麒. 金属学报, 1983; 19: A309)
[9] Forget P, Jeandia M, Lyoret A. J Phys IV Fr, 1993; 3: C7–921
[10] Narasimhan S L, Copley S M, van Stryland E W, Basset M. Metall Mater Trans, 1979; 10A: 654
[11] Yang S, Huang W D, Liu W J, Zhong M L, Zhou Y H. Acta Mater, 2002; 50: 315

[1] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[2] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[6] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[7] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[8] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[9] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[10] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[11] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[12] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[13] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[14] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[15] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.