Please wait a minute...
金属学报  2017, Vol. 53 Issue (1): 70-76    DOI: 10.11900/0412.1961.2016.00266
  本期目录 | 过刊浏览 |
多能氦离子注入对W金属微结构的影响
王康1,邓爱红1(),龚敏1,卢晓波1,张元元1,刘翔2
1 四川大学物理科学与技术学院 成都 610064
2 核工业西南物理研究院 成都 610041
Effect on Microstructure of Tungsten Under Helium Ions Irradiation with Multiple Energy
Kang WANG1,Aihong DENG1(),Min GONG1,Xiaobo LU1,Yuanyuan ZHANG1,Xiang LIU2
1 College of Physical Science and Technology, Sichuan University, Chengdu 610064, China
2 Southwestern Institute of Physics, Chengdu 610041, China
全文: PDF(2449 KB)   HTML  
摘要: 

利用SEM和慢正电子束分析(SPBA)方法研究了不同注量的多能氦离子注入和注氦后不同温度退火的多晶W中He相关缺陷的演化机制。结果表明,W材料中由多能氦离子注入引入的空位型缺陷数目随着He+注量的升高而增大;220 ℃退火引起注氦W样品中的间隙W原子与空位的复合,降低了材料中的空位型缺陷数目;450 ℃和650 ℃退火的注氦W材料中形成了He泡,He泡尺寸与退火温度有关,650 ℃退火的样品中观测到直径达600 nm的大尺寸He泡和孔洞结构。

关键词 WHe正电子湮没空位型缺陷    
Abstract

Tungsten is considered as the most promising candidate for plasma-facing materials in future nuclear fusion reactors. The damage behaviors of tungsten under different He irradiation are one of the main issue of concerns. In this work, the evolution of helium-related defect in polycrystalline tungsten was studied by slow positron beam analysis (SPBA) and SEM as functions of annealing temperature and implantation fluence. The results show that the number of vacancy-type defect induced by the multi-energy He irradiation increases with the increment of irradiation fluence. At the meantime, annealing at the temperature of 220 ℃ induces the recombination of interstitial W atoms with vacancies, thus reduces the number of the vacancy-type defects in the sample. And annealing at 450 and 650 ℃ leads to the formation of He bubbles in the tungsten materials, and the size of He bubbles in tungsten is related to the annealing temperature, and the He bubbles and holes with a diameter of about 600 nm could be observed for the specimen annealing at 650 ℃.

Key wordsW    He    positron annihilation    vacancy-type defect
收稿日期: 2016-06-29      出版日期: 2016-11-18
基金资助:资助项目 国家自然科学基金项目Nos.11275132和11675114

引用本文:

王康,邓爱红,龚敏,卢晓波,张元元,刘翔. 多能氦离子注入对W金属微结构的影响[J]. 金属学报, 2017, 53(1): 70-76.
Kang WANG,Aihong DENG,Min GONG,Xiaobo LU,Yuanyuan ZHANG,Xiang LIU. Effect on Microstructure of Tungsten Under Helium Ions Irradiation with Multiple Energy. Acta Metall, 2017, 53(1): 70-76.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00266      或      http://www.ams.org.cn/CN/Y2017/V53/I1/70

表 1  W样品编号和对应的He+注量
图1  SRIM-2013模拟得到He+辐照金属W后He含量和对应的损伤随深度的分布
图2  不同He+注量辐照的W样品的S-E
图3  不同He+注量辐照钨样品的S-W图谱
图4  不同温度退火的注氦W样品的截面SEM像
图5  不同温度退火钨样品的S-E
图6  不同温度退火的W样品的S-W图谱
[1] Clark R E H, Reiter D H. Nuclear Fusion Research: Understanding Plasma-Surface Interactions[M]. Berlin: Springer, 2005: 3
[2] Hao J K.Fusion Reactor Material [M]. Beijing: Chemical Industry Press, 2007: 12
[2] (郝嘉琨. 聚变堆材料 [M]. 北京: 化学工业出版社, 2007: 12)
[3] Yuan B S, Jiang S F, Lu Z H.Device Foundation of Tokamak [M]. Beijing: Atomic Energy Press, 2011: 155
[3] (袁保山, 姜韶风, 陆志鸿. 托卡马克装置工程基础 [M]. 北京: 原子能出版社, 2011: 155)
[4] Federici G, Barabash V, Janeschitz G, et al.Selection of plasma-facing materials in next-step fusion devices [A]. 19th Symposium on Fusion Engineering[C]. Atlantic: IEEE, 2002: 311
[5] Bolt H, Barabash V, Federici G, et al. Plasma facing and high heat flux materials——needs for ITER and beyond [J]. J. Nucl. Mater., 2002, 307-311: 43
[6] Frauenfelder R.Solution and diffusion of hydrogen in tungsten[J]. J. Vac. Sci. Technol., 1969, 6: 388
[7] Federici G, Anderl R, Brooks J N, et al. Tritium inventory in the ITER PFC's: predictions, uncertainties, R&D status and priority needs [J]. Fusion Eng. Des., 1998, 39-40: 445
[8] Pitts R A, Carpentier S, Escourbiac F, et al.A full tungsten divertor for ITER: physics issues and design status[J]. J. Nucl. Mater., 2013, 438(suppl.): S48
[9] Wang F Z, Tang L X, Feng P F, et al.Tungsten Materials and Its Processing [M]. Beijing: Metallurgy Industry Press, 2008: 1
[9] (王发展, 唐丽霞, 冯鹏发等. 钨材料及其加工 [M]. 北京: 冶金工业出版社, 2008: 1)
[10] Ioki K, Barabash V, Cardella A, et al. Design and material selection for ITER first wall/blanket, divertor and vacuum vessel [J]. J. Nucl. Mater., 1998, 258-263: 74
[11] Barnes R S.Embrittlement of stainless steels and nickel-based alloys at high temperature induced by neutron radiation[J]. Nature, 1965, 206: 1307
[12] Lhuillier P E, Belhabib T, Desgardin P, et al.Helium retention and early stages of helium-vacancy complexes formation in low energy helium-implanted tungsten[J]. J. Nucl. Mater., 2013, 433: 305
[13] Woller K B, Whyte D G, Wright G M, et al.Helium concentration in tungsten nano-tendril surface morphology using Elastic Recoil Detection[J]. J. Nucl. Mater., 2013, 438(suppl.): S913
[14] Wiss T A G, Hiernaut J P, Damen P M G, et al. Helium behaviour in waste conditioning matrices during thermal annealing[J]. J. Nucl. Mater., 2006, 352: 202
[15] Debelle A, Barthe M F, Sauvage T, et al.Helium behaviour and vacancy defect distribution in helium implanted tungsten[J]. J. Nucl. Mater., 2007, 362: 181
[16] Debelle A, Barthe M F, Sauvage T.First temperature stage evolution of irradiation-induced defects in tungsten studied by positron annihilation spectroscopy[J]. J. Nucl. Mater., 2008, 376: 216
[17] Debelle A, Lhuillier P E, Barthe M F, et al.Helium desorption in 3He implanted tungsten at low fluence and low energy[J]. Nucl. Instr. Meth. Phys. Res., 2010, 268B: 223
[18] Iwakiri H, Yasunaga K, Morishita K, et al. Microstructure evolution in tungsten during low-energy helium ion irradiation [J]. J. Nucl. Mater., 2000, 283-287: 1134
[19] Iwakiri H, Morishita K, Yoshida N. Effects of helium bombardment on the deuterium behavior in tungsten [J]. J. Nucl. Mater., 2002, 307-311: 135
[20] Yoshida N, Iwakiri H, Tokunaga K, et al. Impact of low energy helium irradiation on plasma facing metals [J]. J. Nucl. Mater., 2005, 337-339: 946
[21] Watanabe Y, Iwakiri H, Yoshida N, et al.Formation of interstitial loops in tungsten under helium ion irradiation: rate theory modeling and experiment[J]. Nucl. Instr. Meth. Phys. Res., 2007, 255B: 32
[22] Henriksson K O E, Nordlund K, Krasheninnikov A, et al. The depths of hydrogen and helium bubbles in tungsten: a comparison[J]. Fusion Sci. Technol., 2006, 50: 43
[23] Wang S J, Chen Z Q, Wang B, et al.Applied Positron Spectroscopy [M]. Wuhan: Hubei Science and Technology Press, 2008: 39
[23] (王少阶, 陈志权, 王波等. 应用正电子谱学 [M]. 武汉: 湖北科学技术出版社, 2008: 39)
[24] Yu W Z.Positron Physics and Its Application [M]. Beijing: Science Press, 2002: 441
[24] (郁伟忠. 正电子物理及其应用 [M]. 北京: 科学出版社, 2002: 441)
[25] Van Veen A, Schut H, de Vries J, et al. Analysis of positron profiling data by means of "VEPFIT" [A]. 4th International Workshop on: Slow-Positron Beam Techniques for Solids and Surfaces[C]. Canada: AIP, 1990, 218: 171
[26] Ziegler J F, Ziegler M D, Biersack J P.SRIM——The stopping and range of ions in matter (2010)[J]. Nucl. Instr. Meth. Phys. Res., 2010, 268: 1818
[27] Yu J N.Material Radiation Effect [M]. Beijing: Chemical Industry Press, 2007: 154
[27] (郁金南. 材料辐照效应 [M]. 北京: 化学工业出版社, 2007: 154)
[28] Wang Q, Meng D Q, Liu K D, et al.Study of pure iron implanted by the multiple energy-carbon ion[J]. Mater. Prot., 2007, 40(5): 13
[28] (王茜, 蒙大桥, 刘柯钊等. 多能碳离子注入纯铁研究[J]. 材料保护, 2007, 40(5): 13)
[29] Mantl S, Triftshauser W.Defect annealing studies on metals by positron annihilation and electrical resitivity measurements[J]. J. Phys. Rev., 1978, 17B: 1645
[30] Clement M, De Nijs J M M, Balk P, et al. Analysis of positron beam data by the combined use of the shape- and wing-parameters[J]. J. Appl. Phys., 1996, 79: 9029
[31] Wang P X, Song J S.Material of Helium and Tritium Permeation [M]. Beijing: National Defence Industry Press, 2002: 16
[31] (王佩璇, 宋家树. 材料中的氦及氚渗透 [M]. 北京: 国防工业出版社, 2002: 16)
[32] Zhang L, Wang P X, Tao R, et al.Thermal nucleation and growth of He bubbles in He implanted stainless steels[J]. Acta Metall. Sin., 1992, 28: A521
[32] (张镭, 王佩璇, 陶蓉等. 注入氦不锈钢中氦泡热形核及长大研究[J]. 金属学报, 1992, 28: A521)
[33] Trinkaus H, Singh B N.Helium accumulation in metals during irradiation——where do we stand?[J]. J. Nucl. Mater., 2003, 323: 229
[34] Zhong Q P, Zhao Z H.The Fractography [M]. Beijing: Higher Education Press, 2006: 176
[34] (钟群鹏, 赵子华. 断口学[M]. 北京: 高等教育出版社, 2006: 176)
[1] 徐斌,胡庆贤,陈树君,蒋凡,王晓丽. K-PAW准稳态过程小孔与熔池动态行为的数值模拟*[J]. 金属学报, 2016, 52(7): 804-810.
[2] 闫二虎,孙立贤,徐芬,徐达鸣. 基于Thermo-Calc和微观偏析统一模型对Al-6.32Cu-25.13Mg合金凝固路径的预测*[J]. 金属学报, 2016, 52(5): 632-640.
[3] 濮晟,谢光,王莉,潘智毅,楼琅洪. Re和W对铸态镍基单晶高温合金再结晶的影响*[J]. 金属学报, 2016, 52(5): 538-548.
[4] 邓德安,张彦斌,李索,童彦刚. 固态相变对P92钢焊接接头残余应力的影响*[J]. 金属学报, 2016, 52(4): 394-402.
[5] 何波,聂庆武,张洪宇,韦华. 固溶处理对CoCrW合金组织及耐磨性能的影响*[J]. 金属学报, 2016, 52(4): 484-490.
[6] 鲁艳红, 宋元元, 陈胜虎, 戎利建. Al和Si对9Cr2WVTa钢力学性能及耐Pb-Bi腐蚀性能的影响*[J]. 金属学报, 2016, 52(3): 298-306.
[7] 游晓红,王刚刚,王军,许涛,张洪宇,韦华. 固溶处理对热压CoCrW合金组织及力学性能的影响*[J]. 金属学报, 2016, 52(2): 161-167.
[8] 方信贤,薛亚军,戴玉明,王章忠. Ni-W-Cu-P沉积机制及在酸性溶液中的腐蚀行为*[J]. 金属学报, 2016, 52(11): 1432-1440.
[9] 岑升波,陈辉,刘艳,马元明,吴影. CeO2对超音速火焰喷涂WC-12Co涂层腐蚀行为的影响*[J]. 金属学报, 2016, 52(11): 1441-1448.
[10] 康举,李吉超,冯志操,邹贵生,王国庆,吴爱萍. 2219-T8铝合金搅拌摩擦焊接头力学和应力腐蚀性能薄弱区研究*[J]. 金属学报, 2016, 52(1): 60-70.
[11] 郝宪朝,张龙,熊超,马颖澈,刘奎. 760 ℃长期时效对一种Ni-Cr-W-Fe合金组织和力学性能的影响*[J]. 金属学报, 2015, 51(7): 807-814.
[12] 盛立远,郭建亭,赖琛,奚廷斐. Zr添加对NiAl/Cr(Mo)基共晶合金微观组织和力学性能的影响*[J]. 金属学报, 2015, 51(7): 828-834.
[13] 姚曼, 崔薇, 王旭东, 徐海譞, PHILLPOT S R. W辐照损伤初期的分子动力学研究*[J]. 金属学报, 2015, 51(6): 724-732.
[14] 袁晓云, 陈礼清. 一种高锰奥氏体TWIP钢的高温热变形与再结晶行为*[J]. 金属学报, 2015, 51(6): 651-658.
[15] 孙朝阳, 郭祥如, 黄杰, 郭宁, 王善伟, 杨竞. 耦合孪生的TWIP钢单晶体塑性变形行为模拟研究[J]. 金属学报, 2015, 51(3): 357-363.